

# Jolly Jellyfish

**Malware Analysis Report** 

Version 2.0



## Jolly Jellyfish

## Non-persistent downloader for shellcode embedded in image files

## **Executive summary**

- Jolly Jellyfish downloads and executes shellcode, which is hidden in legitimate bitmap image (BMP) files.
- HTTP is used to download image files.
- Debug information left in the samples suggest the author refers to this malware as fishmaster.

## Introduction

Jolly Jellyfish is a Windows executable which downloads and executes shellcode from a hard-coded remote server, using HTTP. Steganography is used to hide the shellcode inside BMP files. Once extracted and, where necessary, decoded, the shellcode is a Cobalt Strike stager. This report covers the analysis of multiple related samples, some of which include additional capabilities. No persistence is implemented by this malware.



## **Malware Details**

## Metadata

| Filename     | abcd461bdb6a6537b7a36848a87b5ea6.virus                                                   |  |  |  |  |  |  |
|--------------|------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Description  | Jolly Jellyfish shellcode downloader which also downloads and executes a legitimate file |  |  |  |  |  |  |
| Size         | 393216 bytes                                                                             |  |  |  |  |  |  |
| MD5          | abcd461bdb6a6537b7a36848a87b5ea6                                                         |  |  |  |  |  |  |
| SHA-1        | e99d5a620a488133f4da24e1f8d2d5e68542b6f3                                                 |  |  |  |  |  |  |
| SHA-256      | f21a9c69bfca6f0633ba1e669e5cf86bd8fc55b2529cd9b064ff9e2e129525e8                         |  |  |  |  |  |  |
| Compile time | 2021-02-26 07:16:23                                                                      |  |  |  |  |  |  |

| Filename     | Browser_plugin (8).exe                                                                                              |  |  |  |  |  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Description  | Jolly Jellyfish shellcode downloader, of XOR-obfuscated shellcode, additionally displays a message box on execution |  |  |  |  |  |  |  |
| Size         | 109568 bytes                                                                                                        |  |  |  |  |  |  |  |
| MD5          | a241ff3d86925a4a12916b401536b019                                                                                    |  |  |  |  |  |  |  |
| SHA-1        | d28eacb1b4d2e9ef54f7dff09ca03a6866fc9184                                                                            |  |  |  |  |  |  |  |
| SHA-256      | a7e9e2bec3ad283a9a0b130034e822c8b6dfd26dda855f883a3a4ff785514f97                                                    |  |  |  |  |  |  |  |
| Compile time | 2021-03-12 06:25:25                                                                                                 |  |  |  |  |  |  |  |

| Filename     | Browser_Plugin.exe                                                                                                                                 |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Description  | Jolly Jellyfish shellcode downloader of XOR-obfuscated shellcode, additionally downloads a legitimate file and displays a message box on execution |
| Size         | 178688 bytes                                                                                                                                       |
| MD5          | 738f46546f6d4a79e2d917b26bf8a93a                                                                                                                   |
| SHA-1        | 834e80f6fa9935fd3184c25e4e37b0a068a773ee                                                                                                           |
| SHA-256      | 4a43fa8a3305c2a17f6a383fb68f02515f589ba112c6e95f570ce421cc690910                                                                                   |
| Compile time | 2021-04-06 03:11:40                                                                                                                                |

| Filename     | bk.exe                                                           |
|--------------|------------------------------------------------------------------|
| Description  | Jolly Jellyfish shellcode downloader                             |
| Size         | 177152 bytes                                                     |
| MD5          | 014dac67e8c32a25ccb024d1d1017b58                                 |
| SHA-1        | ba5558d79dadc12bbbe07e3444441d51d5e5931e                         |
| SHA-256      | 0df3b6e2535f8bb564183ab4e5e47d9b30ffc0204cc5bda1bae8984cdc418410 |
| Compile time | 2021-07-02 02:21:50                                              |

| Filename    | x37.bmp                                                          |
|-------------|------------------------------------------------------------------|
| Description | Jolly Jellyfish payload                                          |
| Size        | 800682 bytes                                                     |
| MD5         | a8c4ac44a5aa9d22319fe4b20cc5e790                                 |
| SHA-1       | 7c348809e99c0be3ba5c122009a2cd15ad50b7bf                         |
| SHA-256     | f0449c41bc3eebb8ea025fafc5b0cd1fcbe9a2d80c447ecc00cf3cab43e1c311 |



## MITRE ATT&CK®

This report has been compiled with respect to the MITRE ATT&CK® framework, a globally accessible knowledge base of adversary tactics and techniques based on real-world observations.

| Tactic                 | ID               | Technique                                                | Procedure                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------|------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Defense<br>Evasion     | <u>T1497.001</u> | Virtualization/Sandbox<br>Evasion: System<br>Checks      | Jolly Jellyfish checks the available memory is greater than 1GB, the size of the disk is greater than 1GB, and the number of logical processors is greater than 0. These checks are designed to avoid running on a machine with low resources, as virtual machines and sandboxes are more likely to have low resources. If these checks fail the process will exit before any malicious behaviour occurs, avoiding detection. |
|                        | T1497.003        | Virtualization/Sandbox<br>Evasion: Time Based<br>Evasion | Jolly Jellyfish adds short sleep commands throughout execution, which could be an attempt to slow down execution enough to evade detection by automated analysis platforms.                                                                                                                                                                                                                                                   |
| Command and<br>Control | T1071.001        | Application Layer<br>Protocol: Web<br>Protocols          | Jolly Jellyfish downloads shellcode over HTTP.                                                                                                                                                                                                                                                                                                                                                                                |
|                        | <u>T1001</u>     | Data obfuscation                                         | Some variants of Jolly Jellyfish download XOR-encoded shellcode.                                                                                                                                                                                                                                                                                                                                                              |
|                        | <u>T1001.002</u> | Data obfuscation:<br>Steganography                       | Jolly Jellyfish downloads shellcode contained within bitmap image (BMP) files.                                                                                                                                                                                                                                                                                                                                                |



## **Functionality**

#### **Overview**

Jolly Jellyfish downloads a bitmap image file containing embedded shellcode over HTTP and extracts, decodes and executes it. The format is described in the 'Functionality (Steganography)' section below. The malware also employs several techniques to evade detection, which vary across different samples and are described in the 'Functionality (Defence evasion)' section of this report.

#### **Persistence**

This malware does not implement any persistence mechanisms.

#### Steganography

Jolly Jellyfish downloads a file with a '.bmp' file extension, which contains embedded shellcode. The downloaded image is shown below in Figure 3.

Figure 1 shows a legitimate BMP image, which begins with  $0 \times 0 \mathbb{A}$  bytes of data (corresponding to the BMP header), followed by a 4-byte little-endian offset value. In the BMP format specification, this value is the offset to the start of the pixel array for the image.

| Bitmap | file | e fo | orma | it         |     |      |            |    |     |     |    |    |     |      |     |              |
|--------|------|------|------|------------|-----|------|------------|----|-----|-----|----|----|-----|------|-----|--------------|
| 00000: | 42   | 4D   | 46   | <b>E</b> 2 | 07  | 00   | 00         | 00 | 00  | 00  | 36 | 00 | 00  | 00   | 28  | 00           |
| 00010: | 00   | 00   | F0   | 02         | 00  | 00   | <b>E</b> 5 | 00 | 00  | 00  | 01 | 00 | 18  | 00   | 00  | 00           |
| 00020: | 00   | 00   | 10   | <b>E2</b>  | 07  | 00   | 00         | 00 | 00  | 00  | 00 | 00 | 00  | 00   | 00  | 00           |
| 00030: | 00   | 00   | 00   | 00         | 00  | 00   | FF         | FF | FF  | FF  | FF | FF | FF  | FF   | FF  | FF           |
| 00040: | FF   | FF   | FF   | FF         | FF  | FF   | FF         | FF | FF  | FF  | FF | FF | FF  | FF   | FF  | FF           |
| 00050: | FF   | FF   | FF   | FF         | FF  | FF   | FF         | FF | FF  | FF  | FF | FF | FF  | FF   | FF  | FF           |
| 00060: | FF   | FF   | FF   | FF         | FF  | FF   | FF         | FF | FF  | FF  | FF | FF | FF  | FF   | FF  | FF           |
| 00070: | FF   | FF   | FF   | FF         | FF  | FF   | FF         | FF | FF  | FF  | FF | FF | FF  | FF   | FF  | FF           |
| 00080: | FF   | FF   | FF   | FF         | FF  | FF   | FF         | FF | FF  | FF  | FF | FF | FF  | FF   | FF  | FF           |
| 00090: | FF   | FF   | FF   | FF         | FF  | FF   | FF         | FF | FF  | FF  | FF | FF | FF  | FF   | FF  | FF           |
| 000A0: | FF   | FF   | FF   | FF         | FF  | FF   | FF         | FF | FF  | FF  | FF | FF | FF  | FF   | FF  | FF           |
| 000B0: | FF   | FF   | FF   | FF         | FF  | FF   | FF         | FF | FF  | FF  | FF | FF | FF  | FF   | FF  | FF           |
|        | Head | ler  |      |            | Off | fset | : to       | pi | xel | arr | ay |    | Res | st o | f h | eader Pixels |

Figure 1: BMP file format



In the downloaded BMP image, shellcode is embedded in, and extracted from, this pixel array by reading every fourth byte, as shown in Figure 2. The shellcode is always null-terminated and has a maximum size of 1900 bytes.

| Bitmap | file | e wi       | ith | emb        | edde | ed d       | lata       |    |    |      |      |     |    |    |    |      |          |      |
|--------|------|------------|-----|------------|------|------------|------------|----|----|------|------|-----|----|----|----|------|----------|------|
| 00000: | 42   | <b>4</b> D | 46  | <b>E</b> 2 | 07   | 00         | 00         | 00 | 00 | 00   | 36   | 00  | 00 | 00 | 28 | 00   |          |      |
| 00010: | 00   | 00         | F0  | 02         | 00   | 00         | <b>E</b> 5 | 00 | 00 | 00   | 01   | 00  | 18 | 00 | 00 | 00   |          |      |
| 00020: | 00   | 00         | 10  | E2         | 07   | 00         | 00         | 00 | 00 | 00   | 00   | 00  | 00 | 00 | 00 | 00   |          |      |
| 00030: | 00   | 00         | 00  | 00         | 00   | 00         | FF         | FF | FF | CO   | FF   | FF  | FF | DE | FF | FF   |          |      |
| 00040: | FF   | C0         | FF  | FF         | FF   | DE         | FF         | FF | FF | CO   | FF   | FF  | FF | DE | FF | FF   |          |      |
| 00050: | FF   | C0         | FF  | FF         | FF   | DE         | FF         | FF | FF | C0   | FF   | FF  | FF | DE | FF | FF   |          |      |
| 00060: | FF   | C0         | FF  | FF         | FF   | DE         | FF         | FF | FF | C0   | FF   | FF  | FF | DE | FF | FF   |          |      |
| 00070: | FF   | C0         | FF  | FF         | FF   | DE         | FF         | FF | FF | C0   | FF   | FF  | FF | DE | FF | FF   |          |      |
| 00080: | FF   | C0         | FF  | FF         | FF   | DE         | FF         | FF | FF | CO   | FF   | FF  | FF | DE | FF | FF   |          |      |
| 00090: | FF   | C0         | FF  | FF         | FF   | DE         | FF         | FF | FF | CO   | FF   | FF  | FF | DE | FF | FF   |          |      |
| 000A0: | FF   | C0         | FF  | FF         | FF   | DE         | FF         | FF | FF | CO   | FF   | FF  | FF | DE | FF | FF   |          |      |
| 000в0: | FF   | C0         | FF  | FF         | FF   | DE         | FF         | FF | FF | C0   | FF   | FF  | FF | 00 | FF | FF   |          |      |
| Нє     | eade | r          |     | 0ff        |      | to<br>rray |            | el | Re | st c | of h | ead | er |    | Pi | xels | Embedded | data |

Figure 2: BMP file format with embedded data

Due to the comparatively small number of pixels affected by this encoding method, any difference from a legitimate image is likely to be hard to notice unless looked for. Figure 3 shows the modified image, and Figure 4 shows a closeup of a section containing embedded data.



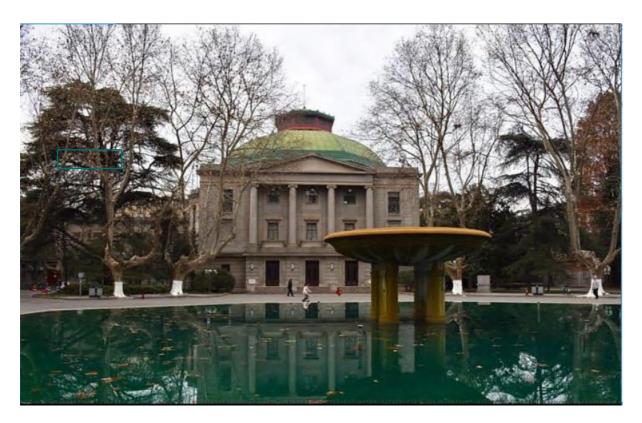



Figure 3: downloaded BMP image with embedded data

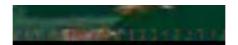



Figure 4: downloaded BMP - closeup to highlight embedded data

## **Shellcode**

Once extracted, the shellcode is a Cobalt Strike stager with the following configuration:

| Туре       | Values                                                           |
|------------|------------------------------------------------------------------|
| C2 server  | download.google-images[.]ml                                      |
| GET URI    | /kXe5                                                            |
| User agent | Mozilla/5.0 (Windows NT 6.1; rv24.0) Gecko/20100101 Firefox/24.0 |



#### Message box

In some variants of Jolly Jellyfish, a message box is displayed. The samples containing this have names such as 'Browser\_plugin.exe', indicating that they are intended to be deployed using social engineering. The message box is intended to make the target think that a browser plugin was successfully updated as shown below. This is further supported by several samples appearing to masquerade as legitimate files, as described in the 'Functionality (Defence evasion)' section of this report.

The hex message data is as follows:

E4 AF C0 C0 C6 F7 B2 E5 BC FE D2 D1 BE AD B3 C9 B9 A6 B8 FC D0 C2 A3 AC C7 EB D6 D8 C6 F4 E4 AF C0 C0 C6 F7 A3 A1

This decodes to simplified Chinese and will be displayed using the MessageBoxA API call.

浏览器插件已经成功更新,请重启浏览器!

This approximately translates to:

The browser plug-in has been successfully updated, please restart the browser!

#### **Defence evasion**

#### Shellcode obfuscation

In some samples, the shellcode is XOR-encoded, using a fixed multi-byte key. The keys used in the analysed samples are misgat mg and mait mg.

#### Sandbox detection

This malware implements some basic anti-sandbox/anti-virtual machine (VM) techniques. This includes checking the physical memory size of the machine exceeds 1GB and that the disk is more than 1GB in size. It also checks that the number of logical processors exceeds zero, although it is unknown why this check occurs. If any of these checks fail it will exit.

#### Anti-dynamic analysis

There are several sleep commands throughout the code, which slow down execution. This could be an attempt to prevent dynamic analysis solutions successfully detecting the malicious behaviour, although they are likely to be short to be effective.

There is a one second sleep between each API call involved in allocating and copying memory, as well as various sleep commands with durations between 1-2 seconds throughout each of the analysed samples.



## Masquerading as legitimate file

Some variants of Jolly Jellyfish download and execute what are apparently legitimate files in addition to the shellcode. This may indicate that targets are tricked into executing these files, which masquerade as legitimate applications or resources.

Examples of downloaded, apparently legitimate, files are shown below:

| Download URL | http://37.61.205[.]212:8880/dow/Aili.pdf                         |
|--------------|------------------------------------------------------------------|
| Description  | Chinese and English language form, shown in Figure 5             |
| Size         | 103402 bytes                                                     |
| MD5          | a465f18c7e50500c6b6f94741ef56b2f                                 |
| SHA-1        | b5053ceba7e45c956f601e77ed1ca4546f372221                         |
| SHA-256      | 17b4cf337cf4fa466a4a1bdc69795c2f96ef7b42464839dafbaf8502e28a3193 |
| Executed?    | No                                                               |

| Download URL | <pre>https://monpass[.]mn/storage/uploads/download_files/Monpass.Client.Inst all.exe</pre> |
|--------------|--------------------------------------------------------------------------------------------|
| Description  | Apparently legitimate application from MonPass, a Mongolian Certificate Authority (CA).    |
| Executed?    | Yes                                                                                        |



#### 申请职位 Position:

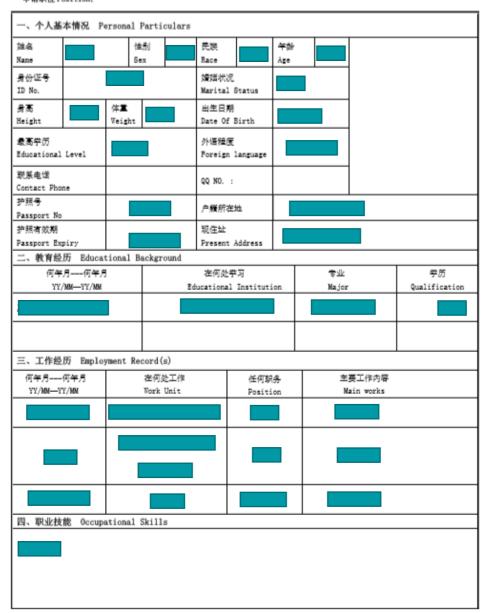



Figure 5: PDF form downloaded by Jolly Jellyfish sample



#### **Communications**

Jolly Jellyfish uses a HTTP GET request to retrieve the obfuscated shellcode.

## Conclusion

Jolly Jellyfish is a low sophistication downloader containing some basic anti-dynamic analysis functionality. It contains easily signatured fixed strings and uses HTTP communications, which present straightforward detection opportunities. Of particular note, however, is the use of steganography to hide the downloaded shellcode in otherwise correctly formatted bitmap files.

The variation of functionality across different samples suggests that Jolly Jellyfish may often be deployed using social engineering.

#### The common PDB path:

C:\Users\test\Desktop\fishmaster\x64\Release\fishmaster.pdb is also used in a different piece of malware that contains a Cobalt Strike Stager. This stager is configured to connect to the same domain as some Jolly Jellyfish variants.



## **Detection**

## **Static strings**

Each of the analysed samples contain the string BidenHappyHappyHappy. This string doesn't appear to have any practical functionality but can be used as an indicator to detect these binaries.

#### Several samples also contain the PDB path

C:\Users\test\Desktop\fishmaster\x64\Release\fishmaster.pdb

## **Indicators of compromise**

| Туре | Description                   | Values                                                   |
|------|-------------------------------|----------------------------------------------------------|
| URL  | URL for downloading shellcode | http://download.google-images[.]ml:8880/downloa/37.bmp   |
| URL  | URL for downloading shellcode | http://download.google-images[.]ml:8880/download/x37.bmp |
| URL  | URL for downloading shellcode | http://micsoftin[.]us:2086/dow/83.bmp                    |
| URL  | URL for downloading shellcode | http://172.20.10[.]6/save.bmp                            |

NB: 172.20.10[.]6 is a private IP. This could be indicative of actor testing or local hosting for lateral movement within a compromised network.



#### **Rules and signatures**

```
DescriptionDetects the "Bidenhappyhappy" string used by the Jolly Jellyfish malwarePrecisionNo false positives seen from Virus Total retrohunts.Rule typeYARA
```

```
rule JollyJellyfish unique string Bidenhappyhappyhappy
   meta:
        author = "NCSC"
        description = "Detects the "Bidenhappyhappy" string used by
the Jolly Jellyfish malware"
        date = "2021-12-15"
        hash1 = "e99d5a620a488133f4da24e1f8d2d5e68542b6f3"
        hash2 = "834e80f6fa9935fd3184c25e4e37b0a068a773ee"
        hash3 = "d28eacb1b4d2e9ef54f7dff09ca03a6866fc9184"
       hash4 = "ba5558d79dadc12bbbe07e344441d51d5e5931e"
    strings:
        $1 = "Bidenhappyhappyhappy"
    condition:
        uint16(0) == 0x5A4D and
        uint32(uint32(0x3c)) == 0x00004550 and
        all of them
}
```

| Description | Detects the string displayed by the message box in some variants of Jolly Jellyfish |
|-------------|-------------------------------------------------------------------------------------|
| Precision   | No false positives seen from Virus Total retrohunts.                                |
| Rule type   | YARA                                                                                |

```
rule JollyJellyfish unique messagebox display string
{
   meta:
        author = "NCSC"
        description = "Detects the string displayed by the message box in
some variants of Jolly Jellyfish"
        date = "2021-12-15"
        hash1 = "d28eacb1b4d2e9ef54f7dff09ca03a6866fc9184"
        hash2 = "834e80f6fa9935fd3184c25e4e37b0a068a773ee"
    strings:
        $popuptext = {E4 AF C0 C0 C6 F7 B2 E5 BC FE D2 D1 BE AD B3 C9 B9
A6 B8 FC D0 C2 A3 AC C7 EB D6 D8 C6 F4 E4 AF C0 C0 C6 F7 A3 A1}
    condition:
        uint16(0) == 0x5A4D and
        uint32(uint32(0x3c)) == 0x00004550 and
        all of them
}
```



**Description** Detects Jolly Jellyfish check for memory being greater than 1GB

**Precision** 

No false positives seen from Virus Total retrohunts.

Rule type

YARA

```
rule JollyJellyfish check memory greater 1gb
   meta:
        author = "NCSC"
        description = "Detects Jolly Jellyfish check for memory being
greater than 1GB"
        date = "2021-12-15"
        hash1 = "e99d5a620a488133f4da24e1f8d2d5e68542b6f3"
        hash2 = "d28eacb1b4d2e9ef54f7dff09ca03a6866fc9184"
        hash3 = "834e80f6fa9935fd3184c25e4e37b0a068a773ee"
        hash4 = "ba5558d79dadc12bbbe07e344441d51d5e5931e"
    strings:
        $1 = {33 D2 48 8B 44 ?? 38 B9 00 04 00 00 48 F7 F1 33 D2 B9 00 04
00 00 48 F7 F1 89 44 ?? ?? 81 7C ?? ?? 00 04 00 00}
        $2 = {48 8B 44 ?? 38 48 C1 E8 14 ?? 00 04 00 00}
    condition:
       uint16(0) == 0x5A4D and
        uint32(uint32(0x3c)) == 0x00004550 and
        any of them
}
```

**Description** Detects the Jolly Jellyfish PDB string

**Precision** 

No non-malicious results, but also detects malware containing Cobalt Strike stager

Rule type

YARA

```
rule JollyJellyfish pdb string
   meta:
        author = "NCSC"
        description = "Detects the Jolly Jellyfish PDB string"
        date = "2021-12-15"
        hash1 = "e99d5a620a488133f4da24e1f8d2d5e68542b6f3"
        hash2 = "834e80f6fa9935fd3184c25e4e37b0a068a773ee"
        hash3 = "d28eacb1b4d2e9ef54f7dff09ca03a6866fc9184"
        hash4 = "ba5558d79dadc12bbbe07e344441d51d5e5931e"
    strings:
        $pdb = "fishmaster.pdb"
    condition:
        uint16(0) == 0x5A4D and
        uint32(uint32(0x3c)) == 0x00004550 and
        any of them
}
```



| Description | Detects Jolly Jellyfish finding the start address of the shellcode in the downloaded data |
|-------------|-------------------------------------------------------------------------------------------|
|             |                                                                                           |

**Precision** 

No false positives seen from virus total retrohunts.

Rule type

YARA

```
rule JollyJellyfish_identify_shellcode_start_addr
   meta:
       author = "NCSC"
       description = "Detects Jolly Jellyfish finding the start address
of the shellcode in the downloaded data"
        date = "2021-12-15"
       hash1 = "e99d5a620a488133f4da24e1f8d2d5e68542b6f3"
       hash2 = "d28eacb1b4d2e9ef54f7dff09ca03a6866fc9184"
        hash3 = "834e80f6fa9935fd3184c25e4e37b0a068a773ee"
       hash4 = "ba5558d79dadc12bbbe07e344441d51d5e5931e"
   strings:
       $1 = {48 89 84 24 ?? 00 00 00 48 8B 84 24 ?? 00 00 00 8B 40 0A 48
8B 4C 24 ?? 48 8D 44 01 03}
       $2 = {8B 43 0A 48 83 C0 03 48 03 D8}
   condition:
       uint16(0) == 0x5A4D and
       uint32(uint32(0x3c)) == 0x00004550 and
       any of them
}
```



## Credits

Secureworks for sharing a copy of the downloaded Bitmap file.

## Disclaimer

This report draws on information derived from NCSC and industry sources. Any NCSC findings and recommendations made have not been provided with the intention of avoiding all risks and following the recommendations will not remove all such risk. Ownership of information risks remains with the relevant system owner at all times.

This information is exempt under the Freedom of Information Act 2000 (FOIA) and may be exempt under other UK information legislation.

Refer any FOIA queries to <a href="mailto:ncscinfoleg@ncsc.gov.uk">ncscinfoleg@ncsc.gov.uk</a>.

All material is UK Crown Copyright ©