
TLP WHITE

TLP WHITE
Page 1 of 27

Turla group using Neuron
and Nautilus tools alongside
Snake malware

Version 2.0

Reference: NCSC-Ops/35-17

 23 November 2017

 Crown Copyright 2017

TLP WHITE

TLP WHITE
Page 2 of 27

About this document

This report provides new intelligence by the NCSC on two tools used by the Turla
group to target the UK. It contains IOCs and signatures for detection by network
defenders.

Handling of the Report
Information in this report has been given a Traffic Light Protocol (TLP) of WHITE,
which means it can be shared within and beyond the CiSP community with no
handling restrictions.

Disclaimer
This report draws on reported information and NCSC investigations into Turla activity
in the UK.

TLP WHITE

TLP WHITE
Page 3 of 27

Contents

Introduction .. 4

Neuron Analysis ... 5

Neuron Service ... 6

Associated Files ... 6

Infection Vector & Install ... 7

Persistence .. 7

Network Communications ... 8

Capabilities .. 10

Neuron Client .. 10

Associated Files ... 10

Persistence .. 11

Configuration ... 12

Network Communications ... 12

Capability ... 13

Associated Files ... 15

Configuration ... 15

Communications ... 17

Capability ... 18

Appendix A .. 20

Neuron Client .. 20

Neuron Service ... 21

Neuron Yara .. 22

Nautilus .. 25

Nautilus Yara... 25

Additional Indicators for Forensic Analysis .. 27

TLP WHITE

TLP WHITE
Page 4 of 27

Introduction

Neuron and Nautilus are malicious tools designed to operate on Microsoft Windows
platforms, primarily targeting mail servers and web servers. The NCSC has observed
these tools being used by the Turla group to maintain persistent network access and
to conduct network operations.

The Turla group use a range of tools and techniques, many of which are custom. Using
their advanced toolkit, the Turla group compromise networks for the purposes of
intelligence collection. The Turla group is known to target government, military,
technology, energy and commercial organisations.

The Turla group has operated on targets using a rootkit known as Snake for many
years. Like Neuron and Nautilus, Snake provides a platform to steal sensitive data,
acts as a gateway for internal network operations and is used to conduct onward
attacks against other organisations.

The Turla group are experienced in maintaining covert access through incident
response activities. They infect multiple systems within target networks and deploy a
diverse range of tools to ensure that they retain a foothold back onto a victim even
after the initial infection vector has been mitigated.

The NCSC has observed both Neuron and Nautilus being used in conjunction with the
Snake rootkit. In a number of instances, one or both of these tools has been deployed
following the successful installation of Snake. The NCSC believes that Neuron and
Nautilus are another component of the wider Turla campaign and are not acting as
replacements for the Snake rootkit. It is likely that these tools have seen wider
deployment since the Snake rootkit has been reported on by the information security
industry, providing the group with additional methods of access.

This advisory provides information to detect Neuron and Nautilus infections. The
NCSC encourages any organisation that has previously experienced a compromise
by the Turla group to be diligent in checking for the presence of these additional tools.
Whilst they are commonly deployed alongside the Snake rootkit, these tools can also
be operated independently.

TLP WHITE

TLP WHITE
Page 5 of 27

Neuron Analysis

Neuron consists of both client and server components. The Neuron client and Neuron
service are written using the .NET framework with some codebase overlaps.

The Neuron client is used to infect victim endpoints and extract sensitive information
from local client machines. The Neuron server is used to infect network infrastructure
such as mail and web servers, and acts as local Command & Control (C2) for the client
component. Establishing a local C2 limits interaction with the target network and
remote hosts. It also reduces the log footprint of actor infrastructure and enables client
interaction to appear more convincing as the traffic is contained within the target
network.

The main method of communication between the Neuron client and service is via
HTTP requests. The Neuron service creates its own HTTP listener and waits for
requests to a configured Neuron URL endpoint. These endpoint names are themed
around legitimate web services, such as Microsoft Exchange and Microsoft IIS, which
further helps malware traffic appear legitimate. Details of these endpoints are provided
in the Neuron service communications section of this advisory.

A subset of Neuron services analysed by the NCSC can receive communications via
pipes alongside the HTTP listener, however this functionality is missing from some
samples.

One of the main pieces of functionality implemented within Neuron is the synchronising
of “StorageFile” objects and “StorageScript” objects between the client and service.
These are described in more detail in the Network Communications section.

This malware is referred to as “Neuron” due to the presence of a PDB string within the
binary and various other references throughout.

c:\Develop\internal\neuron-client\dropper-svc\obj\Release\dropper-svc.pdb

TLP WHITE

TLP WHITE
Page 6 of 27

Neuron Service

The Neuron service is typically installed on compromised infrastructure such as mail
and web servers, and listens for HTTP requests from infected clients. In this way,
Neuron service acts as a Command & Control (C2) server inside the victim network
for infected Neuron clients. While Neuron service examples observed by the NCSC
have been running on servers, it is also possible for it to be run on Windows clients.

The installation of a C2 server inside the victim network allows the actor to evade
detection by network gateway based monitoring. While external communications are
required for the actor to make connections back to their upstream C2 infrastructure,
these communications are often encrypted using the legitimate TLS configuration of
the victim network.

The Neuron service and client model enables the communications to appear
legitimate, with endpoint victims running the client, and the actor initiating connections
to the (typically) outward-facing Neuron infected server.

Associated Files

Name Microsoft.Exchange.Service.exe

Description Neuron Service

MD5 0f12268221e27406351a6313f902b498

SHA1 b0dbdc81a0e367330007b7e593d8dabf92ca7afd

SHA256 d1d7a96fcadc137e80ad866c838502713db9cdfe59939342b8e3beacf9c7fe29

Size 43008

Name w3wpdiag.exe

Description Neuron Service

MD5 371b4380080e3d94ffcae1a7e9a0d5e2

SHA1 f7088075d1c798f27b0d269c97dc877ff16f1401

SHA256 2986bae15cfa78b919d21dc070be944e949a027e8047a812026e35c66ab17353

Size 59392

Name Updater.exe

Description Neuron Service

MD5 8229622a9790d75e09a099e8758d5703

SHA1 10586913ceeecd408da4e656c29ed4e91c6b758e

SHA256 2f4d6a3c87770c7d42d1a1b71ed021a083b08f69ccaf63c15428c7bc6f69cb10

Size 44544

TLP WHITE

TLP WHITE
Page 7 of 27

Name w3wpdiag.exe

Description Neuron Service

MD5 a3bdc385cf68019449027bd6d8cecb4d

SHA1 fe8da5a1e62a8d4f627834b0f26c802a330d8d45

SHA256 0f4e9e391696ed8b9172985bb43cca7d7f2c8a4ae0493e4bf1f15b90f7138259

Size 58880

Name dropper-svc.exe

Description Dropper for the Neuron service

MD5 d6ef3c8f2c3f3ddffbb70f5dadfa982c

SHA1 934b288075c122165897276b360c61e77cb7bde0

SHA256 fa543de359d498150cbcb67c1631e726a4b14b0a859573185cede5b12ad2abfb

Size 85008

Infection Vector & Install

The infection vector for the Neuron service is typically via exploitation of application
layer vulnerabilities in server software, server misconfigurations, or brute-force attacks
on administrative accounts.

Neuron service requires a dropper that essentially performs the same actions as the
client dropper, embedding the final payload using the same method detailed in the
Neuron client section. The service dropper takes a parameter of the path where the
payload will be dropped.

Following execution, the dropper modifies the last access time of the deployed files to
match the timestamps of the legitimate file “EdgeTransport.exe”. It is advised that
forensic investigators conduct a search for files that have this timestamp applied.

Finally, the dropper executes the following command to remove all installation log files:

cmd.exe /c del *.InstallLog *.InstallState

Persistence

In order to persist on the compromised hosts, Neuron service installs itself as an
automatic service, allowing the infection to persist through a server restart. The
Neuron service can be manually stopped and removed, and contains no method of re-
establishing execution.

TLP WHITE

TLP WHITE
Page 8 of 27

The Neuron service attempts to masquerade as legitimate Microsoft Exchange or
Microsoft IIS services. A list of the service names and descriptions used within Neuron
samples is as follows:

SERVICE NAME DISPLAY NAME DESCRIPTION

MSExchangeService Microsoft Exchange
Service

Host service for the Microsoft Exchange
Server management provider. If this service
is stopped or disabled, Microsoft Exchange
cannot be managed.

W3WPDIAG Microsoft IIS
Diagnostics Service

Host service for the Microsoft IIS management
provider. If this service is stopped or
disabled, Microsoft IIS cannot be managed.

Updater Updater Host service for software update. If this
service is stopped or disabled, software
cannot be update.

Network Communications

Communications between the client and service are via HTTP requests. The service
will establish a HTTP listener, commonly on port 443 (https), however instances have
been analysed where port 80 (http) is used instead. The listener waits for requests on
the host matching specific URIs defined by the configuration. The following have been
defined in the configuration in Neuron samples analysed by the NCSC:

Neuron clients send requests to the defined endpoint in order to communicate with the
service. In order to make the traffic from clients look legitimate, the actor has chosen
to name their endpoints with common Microsoft Windows terms.

Communications are encrypted using RC4 as an additional layer of security. The RC4
key is sent to the connecting client using a pre-configured RSA key.

Parameters for a request are sent in the POST body, with the following values
possible:

https://*:443/ews/exchange/

https://*:443/W3SVC/

https://*:80/W3SVC/

cid

cadataKey

cadata

cadataSig

TLP WHITE

TLP WHITE
Page 9 of 27

The values for these parameters are base64 encoded and RC4 encrypted using the
key exchanged between the client and service. Each parameter performs a different
task within the service; for example, “cid” requests the current RC4 key and “cadata”
sends an instruction to be run.

An example HTTP communication is shown below:

The following SNORT rules can be used to alert on this traffic. Network collection will
need to be in place between the client and server; in most instances, this is between
two machines within the same LAN:

In addition to HTTP communications, some observed Neuron service samples have
functionality that enables the clients to communicate with it via pipes, for example:

pipe://*/Winsock2/w3svc

POST https://<domain>/ews/exchange/exchange.asmx HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Host: <domain>
Content-Length: <variable>
Expect: 100-continue
Connection: Keep-Alive

cadata=<url_encoded_b64>

alert tcp $HOME_NET any -> $EXTERNAL_NET any (flow: established,from_client; msg:
"Web/request\:POST - Neuron A"; content: "cadata="; fast_pattern; content: "Content-
Type|3a| application/x-www-form-urlencoded"; content: "Expect|3a| 100-continue"; pcre:
"/\ncadata=[a-zA-Z0-9%]{1,5000}/"; content: "POST"; http_method; rev: 1; priority: 1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET any (flow: established,from_client; msg:
"Web/request\:POST - Neuron B"; content: "cadata="; fast_pattern; content: "Content-
Type|3a| application/x-www-form-urlencoded"; content: "Expect|3a| 100-continue"; pcre:
"/\ncadataKey=[a-zA-Z0-9%]{1,5000}/"; content: "POST"; http_method; rev: 1; priority:
1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET any (flow: established,from_client; msg:
"Web/request\:POST - Neuron C"; content: "cadata="; fast_pattern; content: "Content-
Type|3a| application/x-www-form-urlencoded"; content: "Expect|3a| 100-continue"; pcre:
"/\ncid=[a-zA-Z0-9%]{1,5000}/"; content: "POST"; http_method; rev: 1; priority: 1;)

alert tcp $HOME_NET any -> $EXTERNAL_NET any (flow: established,from_client; msg:
"Web/request\:POST - Neuron D"; content: "cadata="; fast_pattern; content: "Content-
Type|3a| application/x-www-form-urlencoded"; content: "Expect|3a| 100-continue"; pcre:
"/\ncadataSig=[a-zA-Z0-9%]{1,5000}/"; content: "POST"; http_method; rev: 1; priority:
1;)

TLP WHITE

TLP WHITE
Page 10 of 27

Capabilities

The main functionality of the Neuron service is to return and synchronise StorageFile
and StorageScript objects between the client and service.

A StorageFile object contains information about a file including its name, modified date
and the file contents; a StorageScript object contains “instructions”. There are multiple
instruction types, including the following:

 Executing a command using cmd.exe
 Creating new StorageFiles
 Downloading specified or all StorageFiles

Neuron Client

The Neuron client component is typically installed on endpoint machines within a
victim network. Command & Control (C2) is conducted by the Neuron service. The
client is designed to collect, package and send documents to the service component
for onward exfiltration.

Associated Files
Name neuron-client.exe

Description Neuron Client

MD5 4ed42233962a89deaa89fd7b989db081

SHA1 cf731ee0af5c19231ff51af589f7434c0367d508

SHA256 a96c57c35df18ac20d83b08a88e502071bd0033add0914b951adbd1639b0b873

Size 55808

Name Sign.exe

Description Dropper for the Neuron client

MD5 3cd5fa46507657f723719b7809d2d1f9

SHA1 34ddc14b9a04eba98c3aa1cb27033e12ec847e03

SHA256 a6dbc36c472b3ba70a98efd0db35e75c340086be15d3c3ab4e39033604d0bcf9

Size 115712

Name mydoc.doc

Description Macro document that drops and runs Sign.exe (client dropper)

MD5 66f4f1384105ce7ee1636d34f2afb1c9

SHA1 3f23d152cc7badf728dfd60f6baa5c861a500630

SHA256 42fbb2437faf68bae5c5877bed4d257e14788ff81f670926e1d4bbe731e7981b

Size 591360

TLP WHITE

TLP WHITE
Page 11 of 27

Name N/A

Description Macro document that drops and runs Sign.exe (client dropper)

MD5 0e430b6b203099f9c305681e1dcff375

SHA1 845f3048fb0cfbdfb35bf6ced47da1d91ff2e2b1

SHA256 bbe3700b5066d524dd961bd47e193ab2c34565577ce91e6d28bdaf609d2d97a8

Size 590336

Infection Vector and Install

The Neuron client infection vector appears to be via spear-phishing victims with
documents containing macros. When a document is opened, and macros are enabled,
a base64 encoded blob is constructed and written to the %temp% directory as
“Signature.crt”; this is then decoded using the legitimate Microsoft binary “certutil.exe”,
for example:

certutil.exe -decode %TEMP%\Signature.crt %TEMP%\Sign.exe

The resulting executable is the Neuron client dropper, which is responsible for setting
up any initial configuration, establishing persistence and dropping the main payload to
disk.

The main payloads are embedded in the dropper executable and are GZIP
compressed and RC4 encrypted with a hardcoded key. The dropper is also
responsible for deploying any legitimate DLLs that may also be required – these are
stored in the same way.

All files are placed into the directory from which the dropper was executed.

Persistence

The Neuron client executable contains no functionality to establish persistence.
Instead, the dropper handles this for the client by creating a scheduled task, enabling
it to persist after a reboot.

The task is scheduled to run every 12 minutes (PT12M), with a task ID of “Microsoft
Corporation” and a task description constructed from a string retrieved from a
randomly selected registry value. To build the task description, a list of value names
of length 9 or greater but not containing "\" are retrieved from
HKLM\\Software\\Microsoft registry. One of these values is selected and prefixed to
the string " updater". This is then used as the description for the scheduled task.

TLP WHITE

TLP WHITE
Page 12 of 27

Configuration

The Neuron client configuration is stored in the registry as JSON; it must be set up by
the dropper before the client is run as no defaults are specified.

The configuration includes the domains where Neuron service implants have been
deployed, so that the client can communicate with them. The configuration also
specifies a beacon interval for each domain, along with a keep alive interval and time
wait interval.

An example of the server configuration in JSON representation, taken from a Neuron
client dropper, is as follows:

Network Communications

Communications are detailed in the Neuron service section. The Neuron client and
service primarily communicate via HTTP requests.

As an extra layer of security, the client RC4 encrypts any data being sent. The key
used is the Machine GUID retrieved from the registry
(SOFTWARE\Microsoft\Cryptography\MachineGuid); if this is not set then the default
key “8d963325-01b8-4671-8e82-d0904275ab06” is used.

 “Connect”: [
 {
 “URL”: “https://<removed>/ews/exchange/exchange.asmx”,
 “Interval”: 17
 },
 “URL”: “https://<removed>//ews/exchange/exchange.asmx”,
 “Interval”: 32
 {

 }

],

 “KeepAliveInterval”: 7,

 “CmdTimeWait”: 5

TLP WHITE

TLP WHITE
Page 13 of 27

Capability

Once loaded the Neuron Client will loop indefinitely, performing a sync of storage files
with the Neuron service. The interval between synchronisations is specified in the
configuration by the “CmdTimeWait” value.

In order to synchronise with the service, the client will retrieve all local StorageFile
objects and all StorageFiles on the service (without file data) and compare these for
differences. The client retrieves the StorageFiles from the service by sending a POST
request with the following data within the parameter “cadata”:

This is encrypted with RC4 and then base64 encoded before being sent.

The service will respond with a list of all StorageFile metadata (i.e. name and date of
each StorageFile). This is then used to determine which StorageFiles the client is
missing, as well as any files which the service is missing.

The client will send any required files (including file data) to the service by sending the
following command data:

Where a storage file object has a JSON representation as follows:

Finally, the client will download all missing StorageFiles from the service by sending
the following command data:

{
 “cmd”: 0,
 “data”: “”
}

{
 “cmd”: 1,
 “data”: [
 <list_of_storage_files>
]
}

{
 “name”: name,
 “data”: data,
 “date”: date
}

{
 “cmd”: 2,
 “data”: <array_of_request_storage_files>
}

TLP WHITE

TLP WHITE
Page 14 of 27

Where the sent data contains the required StorageFile names, as follows:

These new files are then written to disk, and added to the clients list of StorageFiles.

[
 {
 “name”: “storage.file.1”
 },
 {
 “name”: “storage.file.2”
 }
]

TLP WHITE

TLP WHITE
Page 15 of 27

Nautilus

Nautilus is very similar to Neuron both in the targeting of mail servers and how client
communications are performed. This malware is referred to as Nautilus due to its
embedded internal DLL name “nautilus-service.dll”, again sharing some resemblance
to Neuron.

The main payload and configuration of Nautilus is encrypted within a covert store on
disk which is located in “\ProgramData\Microsoft\Windows\Caches\”. The loader DLL
will access this covert store to decrypt the payload (oxygen.dll), which is then loaded
into a target process via reflective loading.

The Nautilus service listens for HTTP requests from clients to process tasking
requests such as executing commands, deleting files and writing files to disk.

Associated Files

Name dcomnetsrv.dll

Description Nautilus Loader DLL

MD5 2f742ec3bb7590602bc3e97326f2476a

SHA1 9d280e3ef1b180449086dda5b92a7b9bbe63dee4

SHA256 a415ab193f6cd832a0de4fcc48d5f53d6f0b06d5e13b3c359878c6c31f3e7ec3

Size 121344

Name oxygen.dll

Description Nautilus Injected payload

MD5 ea874ac436223b30743fc9979eed5f2f

SHA1 5ed61ec7de11922582f07c3488ef943b439ee226

SHA256 cefc5cf4d46abb86fb0f7c81549777cf1a2a5bfbe1ce9e7d08128ab8bfc978f8

Size 620568

Persistence

Nautilus achieves persistence by running as a service, dcomnetsrv, which is set to
automatically start. It is very likely that this is established by the Nautilus dropper,
similar to the Neuron service dropper; however, the NCSC has not yet analysed a
sample of this file.

Configuration

The configuration for Nautilus is stored encrypted within a covert store that was located
in “\ProgramData\Microsoft\Windows\Caches\”.

TLP WHITE

TLP WHITE
Page 16 of 27

The server configuration block, which defines the port and URL for Nautilus to listen
on, is passed in the identifier “config_listen.system”. A sample configuration is shown
below:

proto=https
host=+
port=443
param=OWA-AUTODISCOVER-EWS

Nautilus also stores several other pieces of contextual information within the covert
store under the identifier “ctx.system”, including an RSA public key:

-----BEGIN PUBLIC KEY-----
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAg4r6SSnj2PnYbe6C4H8c
M7162eRS+RTE8BYW8cTGdFPSiDiVOblImyddBLu/fW7MSc+BUsmg2l9SVyvJrHJk
0xnr7PRH9Dq7IcTYzQPMSsG1nC2Lej09EtilKwAQP08MIpiredzgXwom3rlH0Trc
HiKxjLhQcuK0Mllsq+54gYPaoi6LkZG/lUxhWuGI1M2i3/dHp40vbwaaL5Sotxuv
jSytDsU75U5T+rCAHVMykiLi/x7PKg40JQoYGMSOPUJsx87i/uy3uHoecl2ns038
b70Gh6KJ4x5mwaKjMRsSm8PUN6ccHSyqetpXuTXoKU5dEDIQLNAwXTZY40d/aTEx
uQIDAQAB
-----END PUBLIC KEY-----

The covert store uses a proprietary format to store data. This format stores separate
streams (i.e. one for the config and one for the context) with each split into chunks of
4096 bytes and encrypted using RC4. The offset to the next chunk is calculated by
taking the decrypted int value at offset 0xFF8 of the decrypted chunk, shifting this left
by 0xC and then adding 0x10000. For the first chunk, this initial int value is at offset
0xB4 of the header.

A default RC4 key is used to decrypt the first chunk; this key is hardcoded into Nautilus
as “1B1440D90FC9BCB46A9AC96438FEEA8B” but is passed into a function that
trims the length to 31 bytes, resulting in the final 32 byte initial RC4 key being
“1B1440D90FC9BCB46A9AC96438FEEA8\x00”.

The RC4 implementation used for encryption of the covert store has been modified
from a standard implementation. This may be an attempt to frustrate decryption;
however, it is easily spotted when reverse engineering the sample.

TLP WHITE

TLP WHITE
Page 17 of 27

The following Python implementation duplicates the modified RC4 XOR loop:

A covert store can be identified by RC4 decrypting the 4 bytes at offset 0xFFFC with the
default RC4 key followed by comparison with the magic bytes 0x3a29bd32.

Communications

Communication with clients is performed in a similar fashion to Neuron. Nautilus
listens for incoming connections from clients on port 443 that are addressed to the
URL “/OWA-AUTODISCOVER-EWS”; this URL path could be modified. Nautilus is
commonly installed on a victim mail server, enabling the pre-installed TLS
configuration to be used.

Data sent to the service is encoded in the referrer header, which is masquerading as
a legitimate Bing search. The format string used to create this is as follows:

Referer: http://www.bing.com/search?q=%s&go=Submit&qs=n&pq=%s&sc=0-11&sp=-
1&sk=&cvid=%s&first=21&FORM=%s

def rc4(data, key):
 x = 0
 box = range(256)
 for i in range(256):
 x=(x + box[i] + ord(key[i%len(key)])) % 256
 box[i], box[x] = box[x], box[i]
 out = []
 key = []
 i = box[1]
 j = box[i]
 box[i] = i
 box[1] = j
 for char in data:
 sbb = box[i % 256]
 i += 1
 sbb += j
 kb = box[sbb % 256]
 out.append(chr(ord(char) ^ kb))
 return ''.join(out)

TLP WHITE

TLP WHITE
Page 18 of 27

Capability

The malware can take commands from connecting clients to perform on the infected
host. The commands take the format "O_001", "O_002" and so on. A subset of these
commands allow Nautilus to be tasked with the following:

 O_001: Execute a cmd.exe command
 O_002: Read file
 O_003: Write file
 O_007: Delete file
 O_008: GetTempPathA
 O_009: Sleep
 O_010: Create directory
 O_011: Check if directory
 O_012 Duplicate of O_011

There also appear to be some separately processed commands containing the
following functionality:

 O_100 Shutdown (implant)
 O_101 Uninstall

TLP WHITE

TLP WHITE
Page 19 of 27

ErrorFE.aspx
Alongside the Neuron and Nautilus toolkits, the NCSC identified a file named
“errorFE.aspx”. This file was installed on a number of victims following the successful
exploitation of web application software, and provides additional persistence to enable
the deployment of further tools.

The script defines its working directory as the value of the Windows environment
variable “temp”, using this location to drop and execute files and collect data.

This script accepts web requests and extracts the cookie parameter; valid data in the
cookie is base64 encoded and AES encrypted using hardcoded values.

The script supports the processing of multiple cookies from a single request, indicating
it is possible to issue multiple commands in a single request. When the cookie value
is decoded and decrypted, the script expects one of the following commands followed
by any additional parameters:

Command Function
put Accepts a file name and writes the contents

of “data” request parameter to a file in
the working directory

update Overwrites the shell itself with the
content of the “data” request parameter

time Updates the timestamp on a specific file
with a specified timestamp (creation, last
write and access).

cmd Executes a provided command using “cmd.exe”
del Deletes a specified file
get Gets a specified filename from the working

directory and returns its contents to the
requestor

TLP WHITE

TLP WHITE
Page 20 of 27

Appendix A
Neuron Client

File Name neuron-client.exe
Description Neuron Client
File Size
(bytes)

55808

MD5 4ed42233962a89deaa89fd7b989db081
SHA1 cf731ee0af5c19231ff51af589f7434c0367d508
SHA256 a96c57c35df18ac20d83b08a88e502071bd0033add0914b951adbd1639b0b873

File Name Sign.exe
Description Dropper for the Neuron Client
File Size
(bytes)

115712

MD5 3cd5fa46507657f723719b7809d2d1f9
SHA1 34ddc14b9a04eba98c3aa1cb27033e12ec847e03
SHA256 a6dbc36c472b3ba70a98efd0db35e75c340086be15d3c3ab4e39033604d0bcf9

File Name mydoc.doc
Description Macro document that drops and runs Sign.exe (client dropper)
File Size
(bytes)

591360

MD5 66f4f1384105ce7ee1636d34f2afb1c9
SHA1 3f23d152cc7badf728dfd60f6baa5c861a500630
SHA256 42fbb2437faf68bae5c5877bed4d257e14788ff81f670926e1d4bbe731e7981b

File Name N/A
Description Macro document that drops and runs Sign.exe (client dropper)
File Size
(bytes)

590336

MD5 0e430b6b203099f9c305681e1dcff375
SHA1 845f3048fb0cfbdfb35bf6ced47da1d91ff2e2b1
SHA256 bbe3700b5066d524dd961bd47e193ab2c34565577ce91e6d28bdaf609d2d97a8

TLP WHITE

TLP WHITE
Page 21 of 27

Neuron Service
File Name Microsoft.Exchange.Service.exe
Description Neuron Service
File Size (bytes) 43008
MD5 0f12268221e27406351a6313f902b498
SHA1 b0dbdc81a0e367330007b7e593d8dabf92ca7afd
SHA256 d1d7a96fcadc137e80ad866c838502713db9cdfe59939342b8e3beacf9c7fe29

File Name w3wpdiag.exe
Description Neuron Service
File Size (bytes) 59392
MD5 371b4380080e3d94ffcae1a7e9a0d5e2
SHA1 f7088075d1c798f27b0d269c97dc877ff16f1401
SHA256 2986bae15cfa78b919d21dc070be944e949a027e8047a812026e35c66ab17353

File Name Updater.exe
Description Neuron Service
File Size (bytes) 44544
MD5 8229622a9790d75e09a099e8758d5703
SHA1 10586913ceeecd408da4e656c29ed4e91c6b758e
SHA256 2f4d6a3c87770c7d42d1a1b71ed021a083b08f69ccaf63c15428c7bc6f69cb10

File Name w3wpdiag.exe
Description Neuron Service
File Size (bytes) 58880
MD5 a3bdc385cf68019449027bd6d8cecb4d
SHA1 fe8da5a1e62a8d4f627834b0f26c802a330d8d45
SHA256 0f4e9e391696ed8b9172985bb43cca7d7f2c8a4ae0493e4bf1f15b90f7138259

File Name dropper-svc.exe
Description Dropper for the Neuron service
File Size (bytes) 85008
MD5 d6ef3c8f2c3f3ddffbb70f5dadfa982c
SHA1 934b288075c122165897276b360c61e77cb7bde0
SHA256 fa543de359d498150cbcb67c1631e726a4b14b0a859573185cede5b12ad2abfb

TLP WHITE

TLP WHITE
Page 22 of 27

Neuron Yara

rule neuron_common_strings {

 meta:

 description = "Rule for detection of Neuron based on commonly used strings"

 author = "NCSC UK"

 hash = "d1d7a96fcadc137e80ad866c838502713db9cdfe59939342b8e3beacf9c7fe29"

 strings:

 $strServiceName = "MSExchangeService" ascii

 $strReqParameter_1 = "cadataKey" wide

 $strReqParameter_2 = "cid" wide

 $strReqParameter_3 = "cadata" wide

 $strReqParameter_4 = "cadataSig" wide

 $strEmbeddedKey =
"PFJTQUtleVZhbHVlPjxNb2R1bHVzPnZ3WXRKcnNRZjVTcCtWVG9Rb2xuaEVkMHVwWDFrVElFTUNTNEFnRkRCclNm
clpKS0owN3BYYjh2b2FxdUtseXF2RzBJcHV0YXhDMVRYazRoeFNrdEpzbHljU3RFaHBUc1l4OVBEcURabVVZVklVb
HlwSFN1K3ljWUJWVFdubTZmN0JTNW1pYnM0UWhMZElRbnl1ajFMQyt6TUhwZ0xmdEc2b1d5b0hyd1ZNaz08L01vZH
VsdXM+PEV4cG9uZW50PkFRQUI8L0V4cG9uZW50PjwvUlNBS2V5VmFsdWU+" wide

 $strDefaultKey = "8d963325-01b8-4671-8e82-d0904275ab06" wide

 $strIdentifier = "MSXEWS" wide

 $strListenEndpoint = "443/ews/exchange/" wide

 $strB64RegKeySubstring = "U09GVFdBUkVcTWljcm9zb2Z0XENyeXB0b2dyYXBo" wide

 $strName = "neuron_service" ascii

 $dotnetMagic = "BSJB" ascii

 condition:

 (uint16(0) == 0x5A4D and uint16(uint32(0x3c)) == 0x4550) and $dotnetMagic and 6 of
($str*)

}

TLP WHITE

TLP WHITE
Page 23 of 27

rule neuron_standalone_signature {

 meta:

 description = "Rule for detection of Neuron based on a standalone signature from .NET
metadata"

 author = "NCSC UK"

 hash = "d1d7a96fcadc137e80ad866c838502713db9cdfe59939342b8e3beacf9c7fe29"

 strings:

 $a =
{eb073d151231011234080e12818d1d051281311d1281211d1281211d128121081d1281211d1281211d128121
1d1281211d1281211d1281211d1281211d1281211d1281211d1281211d1281211d1281211d1281211d1281211
d1281211d1281211d1281211d1281211d1281211d1281211d1281211d1281211d1281211d1281}

 $dotnetMagic = "BSJB" ascii

 condition:

 (uint16(0) == 0x5A4D and uint16(uint32(0x3c)) == 0x4550) and all of them

}

TLP WHITE

TLP WHITE
Page 24 of 27

rule neuron_functions_classes_and_vars {

 meta:

 description = "Rule for detection of Neuron based on .NET function, variable and
class names"

 author = "NCSC UK"

 hash = "d1d7a96fcadc137e80ad866c838502713db9cdfe59939342b8e3beacf9c7fe29"

 strings:

 $class1 = "StorageUtils" ascii

 $class2 = "WebServer" ascii

 $class3 = "StorageFile" ascii

 $class4 = "StorageScript" ascii

 $class5 = "ServerConfig" ascii

 $class6 = "CommandScript" ascii

 $class7 = "MSExchangeService" ascii

 $class8 = "W3WPDIAG" ascii

 $func1 = "AddConfigAsString" ascii

 $func2 = "DelConfigAsString" ascii

 $func3 = "GetConfigAsString" ascii

 $func4 = "EncryptScript" ascii

 $func5 = "ExecCMD" ascii

 $func6 = "KillOldThread" ascii

 $func7 = "FindSPath" ascii

 $var1 = "CommandTimeWait" ascii

 $dotnetMagic = "BSJB" ascii

 condition:

 (uint16(0) == 0x5A4D and uint16(uint32(0x3c)) == 0x4550) and $dotnetMagic and 6 of
them

}

TLP WHITE

TLP WHITE
Page 25 of 27

Nautilus

File Name dcomnetsrv.dll
Description Nautilus Loader DLL
File Size (bytes) 121344
MD5 2f742ec3bb7590602bc3e97326f2476a
SHA1 9d280e3ef1b180449086dda5b92a7b9bbe63dee4
SHA256 a415ab193f6cd832a0de4fcc48d5f53d6f0b06d5e13b3c359878c6c31f3e7ec3

File Name oxygen.dll
Description Nautilus Injected payload
File Size (bytes) 620568
MD5 ea874ac436223b30743fc9979eed5f2f
SHA1 5ed61ec7de11922582f07c3488ef943b439ee226
SHA256 cefc5cf4d46abb86fb0f7c81549777cf1a2a5bfbe1ce9e7d08128ab8bfc978f8

Nautilus Yara

rule nautilus_modified_rc4_loop {

 meta:

 description = "Rule for detection of Nautilus based on assembly code for a modified
RC4 loop"

 author = "NCSC UK"

 hash = "a415ab193f6cd832a0de4fcc48d5f53d6f0b06d5e13b3c359878c6c31f3e7ec3"

 strings:

 $a = {42 0F B6 14 04 41 FF C0 03 D7 0F B6 CA 8A 14 0C 43 32 14 13 41 88 12 49 FF C2
49 FF C9}

 condition:

 (uint16(0) == 0x5A4D and uint16(uint32(0x3c)) == 0x4550) and $a

}

TLP WHITE

TLP WHITE
Page 26 of 27

rule nautilus_rc4_key {

 meta:

 description = "Rule for detection of Nautilus based on a hardcoded RC4 key"

 author = "NCSC UK"

 hash = "a415ab193f6cd832a0de4fcc48d5f53d6f0b06d5e13b3c359878c6c31f3e7ec3"

 strings:

 $key = {31 42 31 34 34 30 44 39 30 46 43 39 42 43 42 34 36 41 39 41 43 39 36 34 33 38
46 45 45 41 38 42}

 condition:

 (uint16(0) == 0x5A4D and uint16(uint32(0x3c)) == 0x4550) and $key

}

rule nautilus_common_strings {

 meta:

 description = "Rule for detection of Nautilus based on common plaintext strings"

 author = "NCSC UK"

 hash = "a415ab193f6cd832a0de4fcc48d5f53d6f0b06d5e13b3c359878c6c31f3e7ec3"

 strings:

 $ = "nautilus-service.dll" ascii

 $ = "oxygen.dll" ascii

 $ = "config_listen.system" ascii

 $ = "ctx.system" ascii

 $ = "3FDA3998-BEF5-426D-82D8-1A71F29ADDC3" ascii

 $ = "C:\\ProgramData\\Microsoft\\Windows\\Caches\\{%s}.2.ver0x0000000000000001.db"
ascii

 condition:

 (uint16(0) == 0x5A4D and uint16(uint32(0x3c)) == 0x4550) and 3 of them

}

TLP WHITE

TLP WHITE
Page 27 of 27

Additional Indicators for Forensic Analysis

The following indicators can be used to search for the presence of Neuron and
Nautilus malware within forensic analysis tools.

$zf(-1,

$zf(-2,

{"instructions":[{"type":

App_Web_juvjerf3.dll

App_Web_vcplrg8q.dll

ar_all2.txt

ar_sa.txt

Convert.FromBase64String(temp[1])

D68gq#5p0(3Ndsk!

dx11.exe

ERRORF~1.ASP

errorFE.aspx

errorfe.aspx.f5dba9b9.compiled

intelliAdminRpc

J8fs4F4rnP7nFl#f

lsa.exe

Msnb.exe

msrpc.exe

Neuron_service

owa.exe

owa_ar2.bat

rexec.exe

payload.x64.dll.system

service.x64.dll.system

