

Malware Analysis Report

SparrowDoor

28 February 2022

© Crown Copyright 2022

Version 1.0

SparrowDoor
A new variant of SparrowDoor with additional functionality

Executive summary

• The SparrowDoor loader performs reflective loading of a portable executable (PE) payload
with no headers.

• SparrowDoor implements multiple defence evasion techniques including inline hooks and AV
detection.

• SparrowDoor communicates with the command and control (C2) server over HTTPS.

• SparrowDoor supports various tasking commands, including reading/writing files and opening
a reverse shell.

Introduction

This report covers technical analysis of a new variant of the SparrowDoor malware reported by ESET
in September 20211. The variant was found on a UK network in 2021 and contains additional
functionality.

SparrowDoor is a persistent loader and backdoor which employs XOR encoding for the C2 channel
underneath HTTPS. The new variant’s additional functionality includes clipboard logging, AV
detection, inline hooking of Windows API functions and token impersonation.

The malware files were recovered from the C:\ProgramData\Microsoft\DRM\ directory on the

victim host.

1 https://www.welivesecurity.com/2021/09/23/famoussparrow-suspicious-hotel-guest/

Malware details

Metadata

Filename libcurl.dll

Description SparrowDoor 32-bit loader

Size 57344 bytes

MD5 46077a32e433a56eb8ba64dcbf86bc60

SHA-1 989b3798841d06e286eb083132242749c80fdd4d

SHA-256 f19bb3b49d548bce4d35e9cf83fba112ef8e087a422b86d1376a395466fdff2d

Compile Time 2021/12/06 06:27:42 UTC

Filename libhost.dll

Description Obfuscated 32-bit SparrowDoor backdoor and shellcode

Size 67857 bytes

MD5 8ad3f513f48f711d573d33b7419e3ed5

SHA-1 c1890a6447c991880467b86a013dbeaa66cc615f

SHA-256 e0b107be8034976f6e91cfcc2bbc792b49ea61a071166968fec775af28b1f19c

MITRE ATT&CK®

This report has been compiled with respect to the MITRE ATT&CK® framework, a globally accessible
knowledge base of adversary tactics and techniques based on real-world observations.

Tactic ID Technique Procedure

Persistence T1543.003 Create or Modify
System Process:
Windows Service

SparrowDoor achieves persistence by
installing SearchIndexer.exe as a

Windows service, using parameters
defined in the malware configuration.

T1547.001

Boot or Logon
Autostart Execution:
Registry Run Keys /
Startup Folder

If SparrowDoor fails to persist as a
Windows Service, it installs
SearchIndexer.exe in the

CurrentVersion\Run key.

Defence
Evasion

T1134.001 Access Token
Manipulation: Token
Impersonation/Theft

SparrowDoor impersonates the user
account token associated with the
explorer.exe process.

T1140 Deobfuscate/Decode
Files or Information

The SparrowDoor malware file
libhost.dll is obfuscated with a 4-

byte XOR key and the configuration is
obfuscated with an 8-byte XOR key.

T1574.002 Hijack Execution
Flow: DLL Side-
Loading

The SparrowDoor malware gains
execution when the malware file
libcurl.dll is side-loaded by

SearchIndexer.exe.

T1055.012 Process Injection:
Portable Executable
Injection

SparrowDoor injects itself into a spawned
and suspended instance of
svchost.exe during initialisation.

https://attack.mitre.org/techniques/T1543/003/
https://attack.mitre.org/techniques/T1547/001/
https://attack.mitre.org/techniques/T1134/001/
https://attack.mitre.org/techniques/T1140/
https://attack.mitre.org/techniques/T1574/002/
https://attack.mitre.org/techniques/T1055/002/

Tactic ID Technique Procedure

T1070.004 Indicator Removal on
Host: File Deletion

SparrowDoor can be tasked to remove
arbitrary files from the host. It can also be
tasked to delete files specific to the
malware execution i.e. a clean-up routine.

T1620 Reflective Code
Loading

SparrowDoor is loaded by a reflective
loader found in libhost.dll.

T1036.005 Masquerading: Match
Legitimate Name or
Location

A legitimate and signed Notepad++
updater has been renamed
SearchIndexer.exe, which is the

name of a legitimate Windows binary.
This file is used to load SparrowDoor.
The malware also uses the name
libcurl.dll for its loader, libcurl is a

legitimate project.

T1218 Signed Binary Proxy
Execution

SparrowDoor is side-loaded into, and
hijacks execution of, a signed Notepad++
updater.

Discovery T1518.001 Software Discovery:
Security Software
Discovery

SparrowDoor checks the running
processes against a list of hardcoded AV
names.

Command and
Control

T1071.001 Application Layer
Protocol: Web
Protocols

SparrowDoor uses HTTPS as a
Command and control (C2) channel and
is proxy aware.

T1573.001 Encrypted Channel:
Symmetric
Cryptography

SparrowDoor uses static XOR keys to
encode data when it is being sent or
received over the C2 channel.

Collection T1115 Clipboard Data SparrowDoor can be tasked to launch
clipboard logging functionality.

Exfiltration T1041 Exfiltration Over C2
Channel

SparrowDoor can be tasked to exfiltrate
files from disk.

https://attack.mitre.org/techniques/T1070/004/
https://attack.mitre.org/techniques/T1620/
https://attack.mitre.org/techniques/T1036/005/
https://attack.mitre.org/techniques/T1218/
https://attack.mitre.org/techniques/T1518/001/
https://attack.mitre.org/techniques/T1071/001/
https://attack.mitre.org/techniques/T1573/001/
https://attack.mitre.org/techniques/T1115/
https://attack.mitre.org/techniques/T1041/

Functionality

Overview

SparrowDoor is a persistent 32-bit loader and backdoor targeting the Windows operating system. The
backdoor can be tasked with various commands, such as opening a reverse shell connection with the
configured C2 server or exfiltrating data. There are numerous design features included in the malware
to evade detection and frustrate analysis.

A legitimate and signed Notepad++ updater has been renamed SearchIndexer.exe by the

malware, which is the name of a legitimate Windows file. The Notepad++ updater loads the libcurl
library, SparrowDoor takes advantage of this, as the malicious loader is given the same name as the
legitimate libcurl library and is side-loaded into the renamed Notepad++ updater process
SearchIndexer.exe. Metadata for SearchIndexer.exe can be found in the ‘Appendix

(SearchIndexer.exe Metadata)’ section.

SparrowDoor creates a mutex, Global\gup0 to ensure only one instance is running on a victim host

at any given time.

The SparrowDoor backdoor registers the paths to three components of the malware as environment
variables 111 (SearchIndexer.exe), 222 (libcurl.dll) and 333 (libhost.dll). These

variables are used to retrieve the paths to the files as part of the clean-up routine, discussed in the
‘Functionality (Tasking)‘ section.

Loading process

The following steps and Figure 1 outline the full loading process:

1. The loader, libcurl.dll, is side-loaded by SearchIndexer.exe.

2. The WinMain function inside SearchIndexer.exe is patched with a long jump to a function

in the loader.
3. When the patched WinMain executes it jumps into the loader (libcurl.dll).

4. The loader deobfuscates and executes the backdoor contained within libhost.dll using

the first 4 bytes of the file as the XOR key, which in this case is 0xB20D0000. This technique

also makes it appear as though the loading of the backdoor has stemmed from code within
SearchIndexer.exe and not libcurl.dll.

Figure 1: SparrowDoor loading process

The relative virtual address (RVA) of SearchIndexer.exe’s WinMain is hardcoded into the

SparrowDoor loader, meaning the malware is unlikely to execute if it is not loaded by the included
SearchIndexer.exe as the loader will patch the long jump into an unknown piece of memory.

The SparrowDoor loader, libcurl.dll will not patch a long jump into the parent executable if it has

been loaded by rundll32.exe. The check for rundll32.exe is likely due to malware functionality

discussed in the ‘Functionality (Tasking)’ section but could also serve the purpose of ensuring it does
not carry out any patching of memory if executed in a sandbox by rundll32.exe.

The deobfuscated libhost.dll is not a PE file, despite the .dll extension. It is a custom file format

consisting of:

• Loader configuration required for reflectively loading the backdoor, such as the entry point,
size of sections and virtual address (VA) of the import table.

• Shellcode of length 0x2C1, which reflectively loads the payload.

• The raw sections (in order) of the SparrowDoor backdoor.

Figure 2: libhost.dll structure

Figure 3 is the first 80 bytes of the loader configuration, with the XOR obfuscation removed. A
breakdown of the structure for the loader configuration can be found in Figure 4.

00 00 00 00 D4 E2 00 00 EE 5A 00 00 00 40 01 00

00 00 40 00 C1 02 00 00 05 00 00 00 00 20 01 00

00 10 00 00 00 C0 00 00 00 F0 00 00 00 10 01 00

00 20 01 00 00 00 00 00 00 AA 00 00 00 30 00 00

00 14 00 00 00 02 00 00 00 16 00 00 00 00 00 00

Figure 3: Loader configuration, after XOR decoding

// Interpreted struct for loader configuration

struct LoaderConfiguration {

 DWORD XOR; // XOR key

 DWORD va_import; // Virtual address of import table

 DWORD va_ep; // Virtual address of entry point

 DWORD image_size;

 DWORD image_base;

 DWORD shellcode_length;

 DWORD sections; // Number of sections

 DWORD rva_reloc; // RVA of .reloc section

 DWORD va_text; // Virtual Address of .text section

 DWORD va_rdata; // Virtual Address of .rdata section

 DWORD va_data; // Virtual Address of .data section

 DWORD va_rsrc; // Virtual Address of .rsrc section

 DWORD va_reloc; // Virtual Address of .reloc section

 DWORD NULL;

 DWORD size_text; // Size of .text section

 DWORD size_rdata; // Size of .rdata section

 DWORD size_data; // Size of .data section

 DWORD size_rsrc; // Size of .rsrc section

 DWORD size_reloc; // Size of .reloc section

 DWORD NULL;

}

Figure 4: Breakdown of loader configuration

To analyse the backdoor properly the headers must be rebuilt, it cannot be unmapped or dumped to a
file from memory. This is a significant anti-analysis feature.

Once the backdoor is loaded into SearchIndexer.exe, it checks whether it is running as

svchost.exe, if it is not then it spawns a suspended instance of svchost.exe and injects into that

to continue its functionality, after exiting the SearchIndexer.exe process. This results in the

backdoor running in an orphaned svchost.exe process created by an abnormal parent

(SearchIndexer.exe) with no command line arguments.

Persistence

SparrowDoor contains two possible options for maintaining persistence. It will first attempt to install
SearchIndexer.exe as a Windows Service. Service metadata such as the service name, display

name and description are contained in the malware configuration discussed in the ‘Functionality
(Configuration)’ section, the extracted service details are shown in Table 1. If creating a service fails,
then it adds SearchIndexer.exe to the

Software\Microsoft\Windows\CurrentVersion\Run registry key.

Field Value

Service Name SearchIndexer

Display Name Windows Searcher

Description Provides content indexing, property caching and search results for files, e-mail and other
contents.

Binary SearchIndexer.exe

Table 1: Service details

One difference between this sample and the previous variant is this one manually adds the service
parameter keys to the service area of the registry using registry API calls, the previous variant uses
the service API calls to register the service for persistence.

Defence evasion

Anti-Virus (AV) detection routine
This variant of SparrowDoor implements an Anti-Virus (AV) detection routine which checks running
processes against a list of known AV process names as shown in Table 2. The malware’s
configuration defines whether to enforce the results of the AV check or not, if it is enforced and there
is a match then the malware won’t execute the read or write file tasking commands discussed in the
‘Functionality (Tasking)’ section. In this sample the ‘enforce AV check’ is not enforced.

SparrowDoor continues to run and execute most of its functionality even if it is configured to enforce
the AV check. No warning is sent to the C2 server that there has been a detection.

Process Name Associated AV Company

ZhuDongFangYu.exe 360.cn

avp.exe Kaspersky

egui.exe ESET

ccSetMgr.exe Symantec

ccSvcHst.exe Symantec

ccapp.exe Symantec

TMBMSRV.exe Trend Micro

cpf.exe Comodo Firewall Pro

Mcshield.exe McAfee

Table 2: AV process names searched for by SparrowDoor

Privilege downgrade
Before making network connections, SparrowDoor impersonates the user account token associated
with the explorer.exe process. This is believed to be a method of privilege downgrade to ensure it

is not drawing undue attention to itself carrying out network communication under a high privilege
account, for example SYSTEM.

Configuration

The configuration for SparrowDoor is in the .data section of the backdoor and is structurally the

same as the configuration for the previous variant with the addition of an ‘enforce AV check’ setting
and C2 port, which had previously been hardcoded. The configuration is obfuscated with the same
XOR key as the previous variant, ^&32yUgf.

Field Value

Domain cdn181.awsdns-531[.]com

User user

Pass pass

Proxy IP 127.1.1.1

Proxy Port 8080

C2 Port 443

Service Name SearchIndexer

Display Name Windows Searcher

Description Provides content indexing, property caching and search results for files, e-mail and other
contents.

Enforce AV
Check

0

Table 3: Malware Configuration

API hooking

SparrowDoor hooks several Windows API functions, achieved by:

• Dynamically resolving the function.

• Modifying the memory protection of the first 5 bytes of the function, so the malware can patch
them.

• Saving the first 5 bytes of the function, to be run when execution is returned to the legitimate
API.

• Patching the first 5 bytes of the function with a long jump to a portion of memory containing
malicious code.

• Reimplementing the original memory protections after the patching has occurred.

The installed hooks provide user impersonation and control over socket options as described below.

User impersonation
The AcquireCredentialsHandleA (sspicli.dll) function is hooked to impersonate the logged-

on user, using the token associated with the explorer.exe process, before returning execution to

the API code. This function is used to acquire credentials from a process to build a token which is
presented to a remote peer via a protocol such as Kerberos or NTLM. This is therefore believed to be
an attempt to ensure that if the SparrowDoor process does communicate with a remote peer, it
doesn’t use a highly privileged account.

The process of taking the token from the explorer.exe process and using it to impersonate the

current logged-on user is observed elsewhere in the malware; it is carried out prior to any C2
connection being made and before it modifies some WinINet options as discussed in the

‘Communications (Command and control)’ section.

Controlling socket options
The shutdown (ws2_32.dll) function is used to disable sending and receiving data from a socket

and is used to begin a graceful shutdown of the TCP connection. This function is patched to bypass
any execution of the legitimate code and return 0 (success).

The closesocket (ws2_32.dll) function is hooked to modify the linger socket option before the

legitimate function is called. The hook sets the l_onoff parameter to 0 before handing execution

back to closesocket.

Note: l_onoff is the value set if the setsockopt function is called with the optname parameter set to
SO_DONTLINGER and the optval parameter is zero2.

If the l_onoff value is 0, then the socket will attempt to close gracefully3.

The hooking of these socket APIs ensures that all network connections from the malware process are
closed gracefully, and no queued data is sent or received once a call to closesocket is made. The

impact of patching shutdown is the socket will be released immediately after use and not wait in the

TIME_WAIT state, as would be default. Malware sockets are therefore only present on the system for

the minimum possible time. The malware does not directly import the hooked socket APIs for use, but
rather uses the WinINet API. Hooking these functions provides control over socket options while

using WinINet.

Note: WinINet APIs do not allow user control over socket options.

2 https://docs.microsoft.com/en-us/windows/win32/api/winsock/ns-winsock-linger

3 https://docs.microsoft.com/en-us/windows/win32/api/winsock/nf-winsock-closesocket

Tasking

Table 4 below highlights SparrowDoor’s supported tasking functionality. Tasking is received in
response to a beacon and is described in the ‘Communications (Tasking communications)’ section.

The command IDs 0x15665665 and 0x15655674 will not be executed if AV processes are detected

as running, as described in the ‘Functionality (Defence Evasion)’ section.

Command ID Description

0x15685647 Retrieve information on drives or directories. If the data portion of the command is a ‘$’
then return a list of attached drives and their type. If the data is a ‘$’ followed by a
directory, then return a list of the files in the directory along with some file metadata, more
detail can be found in ‘Communications (Exfiltration)’.

0x156A5629 Delete a file, specified by the C2 server.

0x15695638 Rename a file, with the old and new names specified by the C2 server. The malware
expects a 1-byte source filename length, followed by the source filename, followed by a 1-
byte destination filename length, followed by the destination filename.

0x156B561A Create a directory, specified by the C2 server.

0x15665665 Read the contents of a file, specified by the C2 server. This command is carried out in a
new thread.

0x15655674 Write data to a file, specified by the C2 server. Data written to the file is additionally
decoded with the XOR key K&c38^5. This command is carried out in a new thread.

0x15645683 Log clipboard data to a file, libcurl.dll.log, every second. If the command data is

‘start clipshot’, spawn a rundll32.exe process with the token of explorer.exe

to call an export in libcurl.dll which logs clipboard data to a file on disk. If the

command data is ‘stop clipshot’ then terminate the rundll32.exe child process.

Same command code as above. Create/control a reverse shell connection with the C2
server. If the command data is ‘exit’ then the reverse shell connection is closed. If the

command data does not match one of the above phrases, it is assumed to be input for the
reverse shell.

0x15635692 Victim clean-up. Delete persistence mechanisms, terminate any spawned processes, and
delete the files SearchIndexer.exe, libcurl.dll and libhost.dll whose paths

are retrieved via the previously set environment variables.

Table 4: Task codes and descriptions

Communications

Command and control

HTTPS is used for the C2 channel, with the port being specified in the malware’s configuration. In this
sample it is 443. A manual DNS request is initiated once the configuration has been parsed and the
returned IP address is used in the HTTP Host header, instead of the configured C2 domain.

SparrowDoor enters a beacon and tasking loop generating a variable sleep time between beacons
ranging from 3-8 minutes, meaning beacons will not have a set periodicity. The malware keeps track
of timings during execution to ensure that the C2 domain is resolved every hour and that if it has not
received tasking in the last five hours it generates a shorter sleep of between 1.5 and 4 seconds
between beacons.

Prior to sending a beacon or exfiltrating data, SparrowDoor impersonates a logged-on user using the
token associated with the explorer.exe process.

SparrowDoor can send its requests via a proxy, however it defaults to a direct connection. If the direct
connection fails, then it can retrieve configured proxy settings from the registry or use the proxy
settings supplied in the malware configuration.

Beacon structure

The first 4 bytes of the beacon are a hardcoded beacon command ID. Figure 5 shows an example of
a beacon with the TLS session decrypted.

POST / HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE 5.0; Windows NT 5.0)

Accept-Language: en-US

Accept: */*

Host: <resolved C2 IP>

Content-Length: 55

Connection: Keep-Alive

Cache-Control: no-cache

<beacon data>

Figure 5: Beacon POST headers

The User-Agent, Accept-Language and Accept headers are hardcoded, the rest of the fields are not.

<beacon data> is a beacon obfuscated with XOR key hH7@83#mi containing basic survey

information, as follows:

a1 56 62 15 2f 00 00 00 ee 02 00 00 0a 00 00 00 00 00 00 00 c0 a8 00 0a

09 32 32 36 30 34 33 30 35 33 04 75 73 65 72 0f 44 45 53 4b 54 4f 50 2d

31 32 33 34 35 36 37

Command ID Data length Windows

version data

Local IP Victim ID,

username,

computer name

Figure 6: Hex-encoded POST data, after decoding with the XOR key hH7@83#mi.

The ASCII representation of the victim ID, username, and computer name, as shown in Figure 6
above and separated by a length field is:

• 226033053

• user

• DESKTOP-1234567

The malware generates a victim ID by calculating a simple hash based on the concatenated ASCII
strings of the username and computer name. The victim ID starts as 0, the concatenated string is then
iterated with each character value being added to the victim ID, multiplying it by 0x1003F then

moving onto the next character. The victim ID, username and computer name are included in the
beacon data, separated by a length byte.

Tasking communications

To task the SparrowDoor malware, the C2 server responds to the beacon with structured tasking in
the HTTP response body. A tasking response contains a command ID, data length and associated
encoded data for the command, the data is obfuscated with the XOR key h*^4hFa.

47 56 68 15 00 00 00 0b 4c 76 1d 0e 34 13 12 0d 58 2d 68

Command ID

(4-byte)

Command data length

(4-byte)

XOR encoded command data

(variable length)

Figure 7: Example task

When de-obfuscated the ASCII representation of the command data shown in Figure 7 is:

 $\C:\Users\

This command will therefore retrieve information about the C:\Users\ directory. The full list of

command IDs and their functionality are listed in the ‘Functionality (Tasking)’ section.

Exfiltration

Not all command codes result in exfiltration of data and no success or failure code is sent to the
server for these tasks. Any exfiltrated data is sent via a POST request which is structured similarly to
the tasking and beacon structure, as shown in Table 8.

POST / HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE 5.0; Windows NT 5.0)

Accept-Language: en-US

Accept: */*

Host: <resolved C2 IP>

Content-Length: 124

Connection: Keep-Alive

Cache-Control: no-cache

<exfil data>

Figure 8: Exfiltration POST headers

<exfil data> is obfuscated with the same XOR key as the beacon, as described in ‘Communications
(Beacon Structure)’, and follows the format below:

47 56 68 15 74 00 00 00 09 32 32 36 30 34 33 30 35 33 72 48 37 40 7b 09

7f 38 1a 0d 3a 44 1c 4d 40 46 1f 35 2c 2d 44 2b 4c 5c 53 31 3d 0d 3b 43

40 38 33 23 6b 69 68 48 17 40 38 33 03 6d 69 68 4e 37 40 38 d5 24 6c 69

6e 48 38 40 2f 33 39 6d 58 46 3c 4f 34 38 33 23 6d 69 6e 48 37 40 18 33

23 6d 49 68 48 37 46 38 33 23 8b 6e 69 48 31 40 37 33 34 6d 4b 68 7a 19

34 40 47 23

Command ID

 Data length

(including

Victim ID)

Victim ID length

(byte), Victim

ID

Command specific

exfil data

Figure 9: Example Data Exfiltration

Figure 9 is an example of the malware’s response to being issued command ID 0x15685647,

requesting the contents of a directory.

The interpreted structures for decoded exfil data for that command are shown in Figure 10 below. A
single directoryData struct is followed by a fileData struct for each file in the requested

directory.

struct directoryData {

 DWORD directoryLength;

 char[] targetDirectoryName; // The directory path that was targeted

}

struct fileData {

 DWORD NULL;

 DWORD FileSizeLow;

 DWORD fileAttributes;

 DWORD hardcoded; //0x20

 DWORD filenameLength;

 WORD SystemTime.Year; // SystemTime for LastWriteTime of file

 WORD SystemTime.Month;

 WORD SystemTime.Day;

 WORD SystemTime.Hour;

 WORD SystemTime.Minute;

 WORD SYstemTime.Second;

 char[] filename;

}

Figure 10: Command ID 0x15685647 interpreted structures

Conclusion

This variant of SparrowDoor’s structure, flow and functionality are very similar to the variant previously
reported by ESET, but with the addition of functionality such as ‘clipshot’ (the clipboard logging
feature), an AV detection routine, token impersonation and hooking capabilities. This variant of
SparrowDoor is of medium sophistication, despite employing some low sophistication techniques
such as XOR-obfuscation of data.

It cannot be confirmed exactly why the malware is conducting API hooking and token impersonation,
but it appears as though the actor is making conscious operational security decisions. The user
account token associated with the explorer.exe process on a well configured system should have

low privileges; impersonating the user would therefore mean it was not making network connections
or accessing resources as a highly privileged user such as the SYSTEM account which may draw

attention to the malware. The user account token for the explorer.exe process will also be the

most common among user-initiated processes as processes inherit the token from their parent, this
may also allow it to blend in with activity on the system.

The choice of AV process names to check for is concise and omits many other common AV agents.
The list doesn’t appear to cover targeting of a particular region. SparrowDoor continues to run and
execute most of its functionality even if it does detect one of the process names, and no warning is
sent to the C2 server that there has been a detection.

Detection

Indicators of compromise

Type Description Values

Domain C2 domain. cdn181.awsdns-531[.]com

File name Log file containing clipboard data, stored
in the same directory as libcurl.dll.

libcurl.dll.log

Mutex Mutex created by SparrowDoor. Global\gup0

Registry key
name

Primary persistence mechanism. HKEY_LOCAL_MACHINE\SYSTEM\CurrentContr
olSet\services\SearchIndexer

Registry key
value

Backup persistence mechanism. HKEY_CURRENT_USER\Software\Microsoft\Win
dows\CurrentVersion\Run\SearchIndexer

Environment
variable

Stores the path to
SearchIndexer.exe.

111

Environment
variable

Stores the path to libcurl.dll. 222

Environment
variable

Stores the path to libhost.dll. 333

Rules and signatures

Description SparrowDoor spawns an instance of svchost.exe, which would be abnormal.

Precision No observed false positives.

Rule type SIGMA

title: SparrowDoor abnormal svchost.exe parent

description: SparrowDoor spawns an instance of svchost.exe, which would

be abnormal.

status: stable

date: 2022/02/28

author: NCSC

version: 1.0

purpose: malware

tlp: white

logsource:

 category: process_creation

 product: windows

detection:

 selection1:

 ParentImage|endswith: '\SearchIndexer.exe'

 selection2:

 Image|endswith: '\svchost.exe'

 condition: selection1 and selection2

level: medium

Description
SparrowDoor's loader has an export which is called by the backdoor to log
clipboard data.

Precision No observed false positives.

Rule type SIGMA

title: SparrowDoor Clipshot

description: SparrowDoor's loader has an export which is called by the

backdoor to log clipboard data.

status: stable

date: 2022/02/28

author: NCSC

version: 1.0

purpose: malware

tlp: white

logsource:

 category: process_creation

 product: windows

detection:

 selection1:

 ParentImage|endswith: '\svchost.exe'

 selection2:

 Image|endswith: '\rundll32.exe'

 selection3:

 CommandLine|contains: 'curl_easy_init'

 condition: selection1 and selection2 and selection3

level: medium

Description
Identifies code segments in SparrowDoor responsible for patching APIs. No
MZ/PE match as the backdoor has no header. Targeting in memory.

Precision No observed false positives in testing or retrohunts in VirusTotal.

Rule type YARA

rule SparrowDoor_apipatch {

 meta:

 author = "NCSC"

 description = "Identifies code segments in SparrowDoor

responsible for patching APIs. No MZ/PE match as the backdoor has no

header. Targeting in memory."

 date = "2022-02-28"

 hash1 = "c1890a6447c991880467b86a013dbeaa66cc615f"

 strings:

 $save = {8B 06 89 07 8A 4E 04} // save off first 5 bytes of

function

 $vp_1 = {89 10 8A 4E 04 8B D6 2B D0 88 48 04 83 EA 05 C6 40 05 E9

89 50 06} // calculate long jump

 $vp_2 = {50 8B D6 6A 40 2B D7 88 4F 04 83 EA 05 6A 05 C6 47 05 E9

89 57 06 56} // calculate long jump 2

 $vp_3 = {51 52 2B DE 6A 05 83 EB 05 56 C6 06 E9 89 5E 01} //

restore memory protections

 $va = {6A 40 68 00 10 00 00 68 00 10 00 00 6A 00} // virtually

alloc set size, allocation and protection

 $s_patch = {50 68 7F FF FF FF 68 FF FF 00 00 56} // socket patch

SO_DONTLINGER

 condition:

 3 of them

}

Description
The SparrowDoor loader contains a feature it calls clipshot, which logs clipboard
data to a file.

Precision No observed false positives in testing or retrohunts in VirusTotal.

Rule type YARA

import "pe"

rule SparrowDoor_clipshot {

 meta:

 author = "NCSC"

 description = "The SparrowDoor loader contains a feature it calls

clipshot, which logs clipboard data to a file."

 date = "2022-02-28"

 hash1 = "989b3798841d06e286eb083132242749c80fdd4d"

 strings:

 $exsting_cmp = {8B 1E 3B 19 75 ?? 83 E8 04 83 C1 04 83 C6 04 83

F8 04} // comparison routine for previous clipboard data

 $time_format_string = "%d/%d/%d %d:%d" ascii

 $cre_fil_args = {6A 00 68 80 00 00 00 6A 04 6A 00 6A 02 68 00 00

00 40 52}

 condition:

 (uint16(0) == 0x5A4D) and uint32(uint32(0x3C)) == 0x00004550 and

all of them and (pe.imports("User32.dll","OpenClipboard") and

pe.imports("User32.dll","GetClipboardData") and

pe.imports("Kernel32.dll","GetLocalTime") and

pe.imports("Kernel32.dll","GlobalSize"))

}

Description
Targets the XOR encoded SparrowDoor loader config and shellcode using the
known position of the XOR key.

Precision No observed false positives in testing or retrohunts in VirusTotal.

Rule type YARA

rule SparrowDoor_config {

 meta:

 author = "NCSC"

 description = "Targets the XOR encoded loader config and

shellcode in the file libhost.dll using the known position of the XOR

key."

 date = "2022-02-28"

 hash1 = "c1890a6447c991880467b86a013dbeaa66cc615f"

 condition:

 (uint16(0) != 0x5A4D) and

 (uint16(0) != 0x8b55) and

 (uint32(0) ^ uint32(0x4c) == 0x00) and

 (uint32(0) ^ uint32(0x34) == 0x00) and

 (uint16(0) ^ uint16(0x50) == 0x8b55)

}

Description
Targets code features of the SparrowDoor loader. This rule detects the previous
variant and this one.

Precision No observed false positives in testing or retrohunts in VirusTotal.

Rule type YARA

rule SparrowDoor_loader {

 meta:

 author = "NCSC"

 description = "Targets code features of the SparrowDoor loader.

This rule detects the previous variant and this new variant."

 date = "2022-02-28"

 hash1 = "989b3798841d06e286eb083132242749c80fdd4d"

 strings:

 $xor_algo = {8B D0 83 E2 03 8A 54 14 10 30 14 30 40 3B C1}

 $rva = {8D B0 [4] 8D 44 24 ?? 50 6A 40 6A 05 56} // load RVA of

process exe

 $lj = {2B CE 83 E9 05 8D [3] 52 C6 06 E9 89 4E 01 8B [3] 50 6A 05

56} // calculate long jump

 condition:

 (uint16(0) == 0x5A4D) and uint32(uint32(0x3C)) == 0x00004550 and

all of them

}

Description
Targets code features of the reflective loader for SparrowDoor. Targeting in
memory.

Precision No observed false positives in testing or retrohunts in VirusTotal.

Rule type YARA

rule SparrowDoor_shellcode {

 meta:

 author = "NCSC"

 description = "Targets code features of the reflective loader for

SparrowDoor. Targeting in memory."

 date = "2022-02-28"

 hash1 = "c1890a6447c991880467b86a013dbeaa66cc615f"

 strings:

 $peb = {8B 48 08 89 4D FC 8B 51 3C 8B 54 0A 78 8B 74 0A 20 03 D1

03 F1 B3 64}

 $getp_match = {8B 06 03 C1 80 38 47 75 34 80 78 01 65 75 2E 80 78

02 74 75 28 80 78 03 50 75 22 80 78 04 72 75 1C 80 78 06 63 75 16 80 78

05 6F 75 10 80 78 07 41 75 0A}

 $k_check = {8B 48 20 8A 09 80 F9 6B 74 05 80 F9 4B 75 05}

 $resolve_load_lib = {C7 45 C4 4C 6F 61 64 C7 45 C8 4C 69 62 72 C7

45 CC 61 72 79 41 C7 45 D0 00 00 00 00 FF 75 FC FF 55 E4}

 condition:

 3 of them

}

Description

SparrowDoor implements a Sleep routine with value seeded on
GetTickCount. This signature detects the previous and this variant of

SparrowDoor. No MZ/PE match as the backdoor has no header.

Precision No observed false positives in testing or retrohunts in VirusTotal.

Rule type YARA

rule SparrowDoor_sleep_routine {

 meta:

 author = "NCSC"

 description = "SparrowDoor implements a Sleep routine with value

seeded on GetTickCount. This signature detects the previous and this

variant of SparrowDoor. No MZ/PE match as the backdoor has no header."

 date = "2022-02-28"

 hash1 = "c1890a6447c991880467b86a013dbeaa66cc615f"

 strings:

 $sleep = {FF D7 33 D2 B9 [4] F7 F1 81 C2 [4] 8B C2 C1 E0 04 2B C2

03 C0 03 C0 03 C0 50}

 condition:

 all of them

}

Description
Highlights XOR routines in SparrowDoor. No MZ/PE match as the backdoor has
no header. Targeting in memory.

Precision No observed false positives in testing or retrohunts in VirusTotal.

Rule type YARA

rule SparrowDoor_xor {

 meta:

 author = "NCSC"

 description = "Highlights XOR routines in SparrowDoor. No MZ/PE

match as the backdoor has no header. Targeting in memory."

 date = "2022-02-28"

 hash1 = "c1890a6447c991880467b86a013dbeaa66cc615f"

 strings:

 $xor_routine_outbound = {B8 39 8E E3 38 F7 E1 D1 EA 8D 14 D2 8B

C1 2B C2 8A [4] 00 30 14 39 41 3B CE}

 $xor_routine_inbound = {B8 25 49 92 24 F7 E1 8B C1 2B C2 D1 E8 03

C2 C1 E8 02 8D 14 C5 [4] 2B D0 8B C1 2B C2}

 $xor_routine_config = {8B D9 83 E3 07 0F [6] 30 18 8D 1C 07 83 E3

07 0F [6] 30 58 01 8D 1C 28 83 E3 07 0F [6] 30 58 02 8D 1C 02 83 E3 07 0F

[6] 30 58 03 8B DE 83 E3 07 0F [6] 30 58 04 83 C6 05 83 C1 05}

 condition:

 2 of them

}

Description Strings that appear in SparrowDoor’s backdoor. Targeting in memory.

Precision
No observed false positives in testing or retrohunts in VirusTotal. Decreasing
the number of matches below 10 did lead to false positives.

Rule type YARA

rule SparrowDoor_strings {

 meta:

 author = "NCSC"

 description = "Strings that appear in SparrowDoor’s backdoor.

Targeting in memory."

 date = "2022-02-28"

 hash1 = "c1890a6447c991880467b86a013dbeaa66cc615f"

 strings:

 $reg = "Software\\Microsoft\\Windows\\CurrentVersion\\Run" ascii

 $http_headers = {55 73 65 72 2D 41 67 65 6E 74 3A 20 4D 6F 7A 69

6C 6C 61 2F 34 2E 30 20 28 63 6F 6D 70 61 74 69 62 6C 65 3B 20 4D 53 49

45 20 35 2E 30 3B 20 57 69 6E 64 6F 77 73 20 4E 54 20 35 2E 30 29 0D 0A

41 63 63 65 70 74 2D 4C 61 6E 67 75 61 67 65 3A 20 65 6E 2D 55 53 0D 0A

41 63 63 65 70 74 3A 20 2A 2F 2A 0D 0A}

 $http_proxy = "HTTPS=HTTPS://%s:%d" ascii

 $debug = "SeDebugPrivilege" ascii

 $av1 = "avp.exe" ascii // Kaspersky

 $av2 = "ZhuDongFangYu.exe" ascii // Qihoo360

 $av3 = "egui.exe" ascii // ESET

 $av4 = "TMBMSRV.exe" ascii // Trend Micro

 $av5 = "ccSetMgr.exe" ascii // Norton

 $clipshot = "clipshot" ascii

 $ComSpec = "ComSpec" ascii

 $export = "curl_easy_init" ascii

 condition:

 10 of them

}

Appendix

SearchIndexer.exe Metadata

Filename SearchIndexer.exe

Description Original name GUP.exe, a signed Generic Updater for Notepad++

Size 580240 bytes

MD5 5f983177f3f9ce6cb72088f3da96435d

SHA-1 1bb8f3f8c67199c36b26115442930d0108dc8e6a

SHA-256 9863ac60b92fad160ce88353760c7c4f21f8e9c3190b18b374bdbca3a7d1a3fb

Compile Time 2018/12/22 13:15:56 UTC

Disclaimer

This report draws on information derived from NCSC and industry sources. Any NCSC findings
and recommendations made have not been provided with the intention of avoiding all risks and
following the recommendations will not remove all such risk. Ownership of information risks
remains with the relevant system owner at all times.

This information is exempt under the Freedom of Information Act 2000 (FOIA) and may be exempt
under other UK information legislation.

Refer any FOIA queries to ncscinfoleg@ncsc.gov.uk.

All material is UK Crown Copyright ©

mailto:ncscinfoleg@ncsc.gov.uk

